A Flat Dual-Polarized Transformation-Optics Beamscanning Luneburg Lens Antenna Using PCB-Stacked Gradient Index Metamaterials

被引:118
作者
Su, Yuanyan [1 ]
Chen, Zhi Ning [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
关键词
Beamscanning; dual polarization; layered gradient-index metamaterials (GRIN MTMs); Luneburg lens antenna; multibeam; transformation optics (TO); DESIGN;
D O I
10.1109/TAP.2018.2858209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on a transformation optics method, a flat compact dual-polarized Luneburg lens antenna is proposed and implemented using the printed-circuit-board-stacked gradient-index metamaterials for beamscanning and multibeam applications at X-hands. The transformed material properties of the planar Luneburg lens are designed with 17-layered permittivity distribution of polynomials. Each layer is discretized into 41 x 41 pixels made of broadband and less polarization-dependent unit cells responsible for desired index distributions. The effects of transformation, approximation, and discretization on the lens performance are analyzed comprehensively. Also, to validate the implementation method, a flat Luneburg lens with a thickness of 14.1 mm, a focal length of 28 mm, and an aperture size of 98.9 x 98.9 mm(2) is designed and tested. A stacked aperture-coupled patch antenna operating at 10 GHz is applied as a feeder. The measured results show that the proposed antenna can operate over a bandwidth of similar to 20% with an antenna efficiency of 32%, a crass-polarization level of <-17.1 dB, as well as the maximum gain of 15.9/16.35 dBi and a scanning angle of +/- 32 degrees/+/- 35 degrees for two orthogonal polarizations, respectively. The presented flat Luneburg lens antenna featuring broad bandwidth, high gain, wide scanning angle, and easy fabrication has a high potential in 5G wireless communication, imaging, and remote sensing applications.
引用
收藏
页码:5088 / 5097
页数:10
相关论文
共 34 条
[1]   Effective parameters for metamorphic materials and metamaterials through a resonant inverse scattering approach [J].
Alexopoulos, Nicolaos G. ;
Kyriazidou, Chryssoula A. ;
Contopanagos, Harry E. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (02) :254-267
[2]  
[Anonymous], 2009, P 6 SOUND MUSIC COMP
[3]   Non-Uniform Metasurface Luneburg Lens Antenna Design [J].
Bosiljevac, Marko ;
Casaletti, Massimiliano ;
Caminita, Francesco ;
Sipus, Zvonimir ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (09) :4065-4073
[4]   A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics [J].
Demetriadou, Angela ;
Hao, Yang .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :1590-1593
[5]   Slim Luneburg lens for antenna applications [J].
Demetriadou, Angela ;
Hao, Yang .
OPTICS EXPRESS, 2011, 19 (21) :19925-19934
[6]   Performance of a three dimensional transformation-optical-flattened Luneburg lens [J].
Driscoll, Tom ;
Lipworth, Guy ;
Hunt, Jack ;
Landy, Nathan ;
Kundtz, Nathan ;
Basov, Dimitri N. ;
Smith, David R. .
OPTICS EXPRESS, 2012, 20 (12) :13262-13273
[7]   A High-Gain Broadband Gradient Refractive Index Metasurface Lens Antenna [J].
Erfani, Elham ;
Niroo-Jazi, Mahmoud ;
Tatu, Serioja .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (05) :1968-1973
[8]   An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials [J].
Holloway, Christopher L. ;
Kuester, Edward F. ;
Gordon, Joshua A. ;
O'Hara, John ;
Booth, Jim ;
Smith, David R. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (02) :10-35
[9]  
Houshmand B., 1989, AP-S International Symposium 1989. 1989 International Symposium Digest: Antennas and Propagation (Cat. No.CH2654-2/89), P262, DOI 10.1109/APS.1989.134666
[10]   Air-Filled Parallel-Plate Cylindrical Modified Luneberg Lens Antenna for Multiple-Beam Scanning at Millimeter-Wave Frequencies [J].
Hua, Changzhou ;
Wu, Xidong ;
Yang, Nan ;
Wu, Wen .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (01) :436-443