On q-symmetric functions and q-quasisymmetric functions

被引:4
|
作者
Li, Yunnan [1 ,2 ]
机构
[1] S China Univ Technol, Sch Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
q-Hopf algebra; Odd quasisymmetric Schur function; Littlewood-Richardson rule; HOPF ALGEBRA; DUALITY;
D O I
10.1007/s10801-014-0538-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the q-analogue of Poirier-Reutenauer algebras, related deeply with other q-combinatorial Hopf algebras. As an application, we use them to realize the odd Schur functions defined by Ellis, Khovanov, and Lauda, then naturally obtain the odd Littlewood-Richardson rule concerned by Ellis. Moreover, we construct the refinement of the odd Schur functions, called odd quasisymmetric Schur functions, parallel to the consideration by Haglund, Luoto, Mason, and van Willigenburg. All the q-Hopf algebras we discuss here provide the corresponding q-dual graded graphs.
引用
收藏
页码:323 / 364
页数:42
相关论文
共 31 条
  • [21] K-theoretic analogues of factorial Schur P- and Q-functions
    Ikeda, Takeshi
    Naruse, Hiroshi
    ADVANCES IN MATHEMATICS, 2013, 243 : 22 - 66
  • [22] (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
    Awata, Hidetoshi
    Kanno, Hiroaki
    Mironov, Andrei
    Morozov, Alexei
    Suetake, Kazuma
    Zenkevich, Yegor
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [23] Crystal Analysis of type C Stanley Symmetric Functions
    Hawkes, Graham
    Paramonov, Kirill
    Schilling, Anne
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03)
  • [24] Optimal mass transport and symmetric representations of their cost functions
    Ghoussoub, Nassif
    Moameni, Abbas
    MATHEMATICS AND FINANCIAL ECONOMICS, 2014, 8 (04) : 435 - 451
  • [25] Superconformal Blocks in Diverse Dimensions and BC Symmetric Functions
    Aprile, Francesco
    Heslop, Paul
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (02) : 995 - 1101
  • [26] Higher spin six vertex model and symmetric rational functions
    Borodin, Alexei
    Petrov, Leonid
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 751 - 874
  • [27] The algebra of quasi-symmetric functions is free over the integers
    Hazewinkel, M
    ADVANCES IN MATHEMATICS, 2001, 164 (02) : 283 - 300
  • [28] Canonical characters on quasi-symmetric functions and bivariate Catalan numbers
    Aguiar, M
    Hsiao, SK
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 11 (02)
  • [29] SUPERCONGRUENCES OF MULTIPLE HARMONIC q-SUMS AND GENERALIZED FINITE/ SYMMETRIC MULTIPLE ZETA VALUES
    Takeyama, Yoshihiro
    Tasaka, Koji
    KYUSHU JOURNAL OF MATHEMATICS, 2023, 77 (01) : 75 - 120
  • [30] Multiobjective higher-order symmetric duality involving generalized cone-invex functions
    Gupta, S. K.
    Jayswal, Anurag
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (12) : 3187 - 3192