Global Existence and Asymptotic Behavior of Classical Solutions for a 3D Two-Species Keller-Segel-Stokes System with Competitive Kinetics

被引:0
作者
Cao, Xinru [1 ]
Kurima, Shunsuke [2 ]
Mizukami, Masaaki [2 ]
机构
[1] Donghua Univ, Sch Sci, North Renmin Rd 2999, Shanghai 201620, Peoples R China
[2] Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2019年 / 62卷 / 03期
基金
中国国家自然科学基金;
关键词
Keller-Segel-Stokes; Global existence; Asymptotic stability; PARABOLIC CHEMOTAXIS SYSTEM; BOUNDEDNESS; STABILIZATION; STABILITY; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a two-species Keller-Segel-Stokes system with competitive kinetics under homogeneous Neumann boundary conditions in a bounded domain with smooth boundary. The main purpose of this paper is to obtain global existence and stabilization of classical solutions to the system in the 3-dimensional case under the smallness conditions for chemotactic interactions. To this end, this paper develops a maximal Sobolev regularity result for Stokes operator involving a time weighted function, which seems new in the existing literature (see Lemma 2.3 in this paper).
引用
收藏
页码:387 / 408
页数:22
相关论文
共 38 条