On the indivisibility of derived Kato's Euler systems and the main conjecture for modular forms

被引:1
作者
Kim, Chan-Ho [1 ]
Kim, Myoungil [2 ]
Sun, Hae-Sang [2 ]
机构
[1] Korea Inst Adv Study, Ctr Math Challenges, 85 Hoegiro, Seoul 02455, South Korea
[2] Ulsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan, South Korea
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 02期
基金
新加坡国家研究基金会;
关键词
Iwasawa theory; Iwasawa main conjectures; Kato's Euler systems; Euler systems; Kolyvagin systems; Modular symbols; Hida families; ELLIPTIC-CURVES; IWASAWA INVARIANTS; SELMER GROUPS; REDUCTION;
D O I
10.1007/s00029-020-00554-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a simple and efficient numerical criterion to verify the Iwasawa main conjecture and the indivisibility of derived Kato's Euler systems for modular forms of weight two at any good prime under mild assumptions. In the ordinary case, the criterion works for all members of a Hida family once and for all. The key ingredient is the explicit computation of the integral image of the derived Kato's Euler systems under the dual exponential map. We provide explicit new examples at the end. This work does not appeal to the Eisenstein congruence method at all.
引用
收藏
页数:47
相关论文
共 51 条
[11]   Variation of Iwasawa invariants in Hida families [J].
Emerton, M ;
Pollack, R ;
Weston, T .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :523-580
[12]  
Fouquet O, ARXIV160406411
[13]   On the Iwasawa invariants of elliptic curves [J].
Greenberg, R ;
Vatsal, V .
INVENTIONES MATHEMATICAE, 2000, 142 (01) :17-63
[14]  
Greenberg R., 2008, IWASAWA INVARIANTS E
[15]  
Greenberg R., 1989, Adv. Stud. Pure Math., V17, P97
[16]  
GRIGOROV G, 2005, THESIS
[17]   ARITHMETIC PROPERTIES OF SIGNED SELMER GROUPS AT NON-ORDINARY PRIMES [J].
Hatley, Jeffrey ;
Lei, Antonio .
ANNALES DE L INSTITUT FOURIER, 2019, 69 (03) :1259-1294
[18]  
Kato K, 2004, ASTERISQUE, P117
[19]  
Kato K, 1993, LECT NOTES MATH, V1553, P50
[20]  
Kim BD, 2009, ASIAN J MATH, V13, P181