On the indivisibility of derived Kato's Euler systems and the main conjecture for modular forms

被引:1
作者
Kim, Chan-Ho [1 ]
Kim, Myoungil [2 ]
Sun, Hae-Sang [2 ]
机构
[1] Korea Inst Adv Study, Ctr Math Challenges, 85 Hoegiro, Seoul 02455, South Korea
[2] Ulsan Natl Inst Sci & Technol, Dept Math Sci, UNIST Gil 50, Ulsan, South Korea
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 02期
基金
新加坡国家研究基金会;
关键词
Iwasawa theory; Iwasawa main conjectures; Kato's Euler systems; Euler systems; Kolyvagin systems; Modular symbols; Hida families; ELLIPTIC-CURVES; IWASAWA INVARIANTS; SELMER GROUPS; REDUCTION;
D O I
10.1007/s00029-020-00554-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a simple and efficient numerical criterion to verify the Iwasawa main conjecture and the indivisibility of derived Kato's Euler systems for modular forms of weight two at any good prime under mild assumptions. In the ordinary case, the criterion works for all members of a Hida family once and for all. The key ingredient is the explicit computation of the integral image of the derived Kato's Euler systems under the dual exponential map. We provide explicit new examples at the end. This work does not appeal to the Eisenstein congruence method at all.
引用
收藏
页数:47
相关论文
共 51 条
[1]  
[Anonymous], 2001, THESIS
[2]  
[Anonymous], LONDON MATH SOC LECT
[3]  
Barmpalias G, 2012, PROCEEDINGS OF THE 11TH ASIAN LOGIC CONFERENCE: IN HONOR OF PROFESSOR CHONG CHITAT ON HIS 60TH BIRTHDAY, P51
[4]   Iwasawa's main conjecture for elliptic curves over anticyclotomic Zp-extensions [J].
Bertolini, M ;
Darmon, H .
ANNALS OF MATHEMATICS, 2005, 162 (01) :1-64
[5]  
Bloch Spencer, 1990, PROGR MATH, V86, P333
[6]   Tamagawa defect of Euler systems [J].
Bueyuekboduk, Kazim .
JOURNAL OF NUMBER THEORY, 2009, 129 (02) :402-417
[7]  
Burungale A., 1908, ARXIV190809512
[8]   Λ-adic Kolyvagin Systems [J].
Buyukboduk, Kazim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (14) :3141-3206
[9]  
Castella F., ARXIV180410993
[10]   NONOPTIMAL LEVELS OF MOD L MODULAR-REPRESENTATIONS [J].
DIAMOND, F ;
TAYLOR, R .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :435-462