Investigating the electrophysiological basis of resting state networks using magnetoencephalography

被引:661
|
作者
Brookes, Matthew J. [1 ]
Woolrich, Mark [2 ]
Luckhoo, Henry [2 ]
Price, Darren [1 ]
Hale, Joanne R. [1 ]
Stephenson, Mary C. [1 ]
Barnes, Gareth R. [3 ]
Smith, Stephen M. [4 ]
Morris, Peter G. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Sir Peter Mansfield Magnet Resonance Ctr, Nottingham NG7 2RD, England
[2] Univ Oxford, Warneford Hosp, Oxford Ctr Human Brain Act, Oxford OX3 7JX, England
[3] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[4] Univ Oxford, John Radcliffe Hosp, Oxford Ctr Funct MRI Brain, Oxford OX3 9DU, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
functional connectivity; neural oscillations; HUMAN BRAIN; MEG; CONNECTIVITY; SCHIZOPHRENIA; FLUCTUATIONS; OSCILLATIONS; SYNCHRONY; DISEASE; CORTEX; MRI;
D O I
10.1073/pnas.1112685108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years the study of resting state brain networks (RSNs) has become an important area of neuroimaging. The majority of studies have used functional magnetic resonance imaging (fMRI) to measure temporal correlation between blood-oxygenation-level-dependent (BOLD) signals from different brain areas. However, BOLD is an indirect measure related to hemodynamics, and the electrophysiological basis of connectivity between spatially separate network nodes cannot be comprehensively assessed using this technique. In this paper we describe a means to characterize resting state brain networks independently using magnetoencephalography (MEG), a neuroimaging modality that bypasses the hemodynamic response and measures the magnetic fields associated with electrophysiological brain activity. The MEG data are analyzed using a unique combination of beamformer spatial filtering and independent component analysis (ICA) and require no prior assumptions about the spatial locations or patterns of the networks. This method results in RSNs with significant similarity in their spatial structure compared with RSNs derived independently using fMRI. This outcome confirms the neural basis of hemodynamic networks and demonstrates the potential of MEG as a tool for understanding the mechanisms that underlie RSNs and the nature of connectivity that binds network nodes.
引用
收藏
页码:16783 / 16788
页数:6
相关论文
共 50 条
  • [1] Network alterations in eating epilepsy during resting state and during eating using Magnetoencephalography
    Gautham, Bhargava
    Chatterjee, Aparajita
    Kenchaiah, Raghavendra
    Narayanan, Mariyappa
    Duble, Shishir
    Mundlamuri, Ravindranadh Chowdary
    Asranna, Ajay
    Bharath, Rose Dawn
    Saini, Jitender
    Sinha, Sanjib
    EPILEPSY & BEHAVIOR, 2022, 137
  • [2] Electrophysiological Correlation Patterns of Resting State Networks in Single Subjects: A Combined EEG-fMRI Study
    Meyer, Matthias C.
    van Oort, Erik S. B.
    Barth, Markus
    BRAIN TOPOGRAPHY, 2013, 26 (01) : 98 - 109
  • [3] Functional Cortical Hubs in the Eyes-Closed Resting Human Brain from an Electrophysiological Perspective Using Magnetoencephalography
    Jin, Seung-Hyun
    Jeong, Woorim
    Seol, Jaeho
    Kwon, Jiyeon
    Chung, Chun Kee
    PLOS ONE, 2013, 8 (07):
  • [4] Describing Relevant Indices from the Resting State Electrophysiological Networks
    Toppi, J.
    Petti, M.
    Fallani, F. De Vico
    Vecchiato, G.
    Maglione, A. G.
    Cincotti, F.
    Salinari, S.
    Mattia, D.
    Babiloni, F.
    Astolfi, L.
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2547 - 2550
  • [5] Intrinsically organized resting state networks in the human spinal cord
    Kong, Yazhuo
    Eippert, Falk
    Beckmann, Christian F.
    Andersson, Jesper
    Finsterbusch, Juergen
    Buechel, Christian
    Tracey, Irene
    Brooks, Jonathan C. W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (50) : 18067 - 18072
  • [6] Electrophysiological signatures of resting state networks under new environmental conditions
    Bocharov, Andrey V.
    Savostyanov, Alexander N.
    Tamozhnikov, Sergey S.
    Karpova, Alexandra G.
    Milakhina, Natalya S.
    Zavarzin, Evgeny A.
    Saprigyn, Alexander E.
    Knyazev, Gennady G.
    NEUROSCIENCE LETTERS, 2023, 794
  • [7] Topographic Electrophysiological Signatures of fMRI Resting State Networks
    Jann, Kay
    Kottlow, Mara
    Dierks, Thomas
    Boesch, Chris
    Koenig, Thomas
    PLOS ONE, 2010, 5 (09): : 1 - 10
  • [8] A Signal-Processing Pipeline for Magnetoencephalography Resting-State Networks
    Mantini, Dante
    Della Penna, Stefania
    Marzetti, Laura
    de Pasquale, Francesco
    Pizzella, Vittorio
    Corbetta, Maurizio
    Romani, Gian Luca
    BRAIN CONNECTIVITY, 2011, 1 (01) : 49 - 59
  • [9] Alzheimer's disease: The state of the art in resting-state magnetoencephalography
    Engels, M. M. A.
    van der Flier, W. M.
    Stam, C. J.
    Hillebrand, A.
    Scheltens, Ph.
    van Straaten, E. C. W.
    CLINICAL NEUROPHYSIOLOGY, 2017, 128 (08) : 1426 - 1437
  • [10] Evaluation and Tracking of Alzheimer's Disease Severity Using Resting-State Magnetoencephalography
    Verdoorn, Todd A.
    McCarten, J. Riley
    Arciniegas, David B.
    Golden, Richard
    Moldauer, Leslie
    Georgopoulos, Apostolos
    Lewis, Scott
    Cassano, Michael
    Hemmy, Laura
    Orr, William
    Rojas, Donald C.
    JOURNAL OF ALZHEIMERS DISEASE, 2011, 26 : 239 - 255