Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability

被引:33
作者
Shahidullah, M [1 ]
Santarelli, LC [1 ]
Wen, H [1 ]
Levitan, IB [1 ]
机构
[1] Univ Penn, Sch Med, Dept Neurosci, Philadelphia, PA 19104 USA
关键词
A-current; afterdepolarization; afterhyperpolarization;
D O I
10.1073/pnas.0503966102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
KCNQ2 and KCNQ3 ion channel pore-forming subunits coassemble to form a heterorneric voltage-gated potassium channel that underlies the neuronal M-current. We and others showed that calmodulin (CaM) binds to specific sequence motifs in the C-terminal domain of KCNQ2 and KCNQ3. We also found that a fusion protein containing a KCNQ2 CaM-binding motif, coexpressed with KCNQ2 and KCNQ3, competes with the full-length KCNQ2 channel for CaM binding and thereby decreases KCNQ2/3 current density in heterologous cells. We have explored the importance of CaM binding for the generation of the native M-current and regulation of membrane excitability in rat hippocampal neurons in primary cell culture. M-current properties were studied in cultured neurons by using whole-cell patch clamp recording. The M-current density is lower in neurons expressing the CaM-binding motif fusion protein, as compared to control neurons transfected with vector alone. In contrast, no change in M-current density is observed in cells transfected with a mutant fusion protein that is unable to bind CaM. The CaM-bincling fusion protein does not influence the rapidly inactivating A-current or the large conductance calcium-activated potassium channel-mediated fast spike afterhyper-polarization in neurons in which the M-current is suppressed. Furthermore, the CaM-binding fusion protein, but not the nonbinding mutant, increases both the number of action potentials evoked by membrane depolarization and the size of the spike afterdepolarization. These results suggest that CaM binding regulates M-channel function and membrane excitability in the native neuronal environment.
引用
收藏
页码:16454 / 16459
页数:6
相关论文
共 34 条
[1]   M-CURRENTS AND OTHER POTASSIUM CURRENTS IN BULLFROG SYMPATHETIC NEURONS [J].
ADAMS, PR ;
BROWN, DA ;
CONSTANTI, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 330 (SEP) :537-572
[2]   MUSCARINIC SUPPRESSION OF A NOVEL VOLTAGE-SENSITIVE K+ CURRENT IN A VERTEBRATE NEURON [J].
BROWN, DA ;
ADAMS, PR .
NATURE, 1980, 283 (5748) :673-676
[3]   ELECTROPHYSIOLOGICAL COMPARISON OF PYRAMIDAL AND STELLATE NONPYRAMIDAL NEURONS IN DISSOCIATED CELL-CULTURE OF RAT HIPPOCAMPUS [J].
BUCHHALTER, JR ;
DICHTER, MA .
BRAIN RESEARCH BULLETIN, 1991, 26 (03) :333-338
[4]   Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells [J].
Erickson, MG ;
Alseikhan, BA ;
Peterson, BZ ;
Yue, DT .
NEURON, 2001, 31 (06) :973-985
[5]   Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels [J].
Gamper, N ;
Shapiro, MS .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (01) :17-31
[6]  
Gamper N, 2003, J NEUROSCI, V23, P84
[7]   AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists [J].
Hoshi, N ;
Zhang, JS ;
Omaki, M ;
Takeuchi, T ;
Yokoyama, S ;
Wanaverbecq, N ;
Langeberg, LK ;
Yoneda, Y ;
Scott, JD ;
Brown, DA ;
Higashida, H .
NATURE NEUROSCIENCE, 2003, 6 (06) :564-571
[8]   Neuronal KCNQ potassium channels: Physiology and role in disease [J].
Jentsch, TJ .
NATURE REVIEWS NEUROSCIENCE, 2000, 1 (01) :21-30
[9]   Pathophysiology of KCNQ channels: Neonatal epilepsy and progressive deafness [J].
Jentsch, TJ ;
Schroeder, BC ;
Kubisch, C ;
Friedrich, T ;
Stein, V .
EPILEPSIA, 2000, 41 (08) :1068-1069
[10]  
Jones S. W, 1987, NEUROMODULATION BIOC, P159