Noise-induced multistability in the square root map

被引:5
作者
Staunton, Eoghan J. [1 ]
Piiroinen, Petri T. [1 ]
机构
[1] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Square root map; Impacting systems; Noise; Period-adding bifurcations; Multistability; Noise-induced transitions; GRAZING BIFURCATIONS; MOTION; CHAOS;
D O I
10.1007/s11071-018-4595-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The effects of small-amplitude additive Gaussian white noise on the one-dimensional square root map are investigated. In particular, the focus is on the unexpected effects noise of varying amplitudes has on the system for parameter regions just outside intervals of multistability. It is shown that in these regions periodic behaviour that is unstable in the deterministic system can be effectively stabilised by the addition of noise of an appropriate amplitude. Features of noise-induced transitions from stable to stabilised unstable periodic behaviour are highlighted, and it is shown how these features can be understood by examining relative levels of expansion and contraction in the deterministic map.
引用
收藏
页码:769 / 782
页数:14
相关论文
共 25 条
[1]  
Arnold L., 1992, DIFFUSION PROCESSES, P241
[2]   Influence of a square-root singularity on the behaviour of piecewise smooth maps [J].
Avrutin, Viktor ;
Dutta, Partha Sharathi ;
Schanz, Michael ;
Banerjee, Soumitro .
NONLINEARITY, 2010, 23 (02) :445-463
[3]   IMPACT OSCILLATORS [J].
BISHOP, SR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1683) :347-351
[4]   GRAZING BIFURCATIONS IN IMPACT OSCILLATORS [J].
CHIN, W ;
OTT, E ;
NUSSE, HE ;
GREBOGI, C .
PHYSICAL REVIEW E, 1994, 50 (06) :4427-4444
[5]   Noise-induced basin hopping in a vibro-impact system [J].
de Souza, Silvio L. T. ;
Batista, Antonio M. ;
Caldas, Ibere L. ;
Viana, Ricardo L. ;
Kapitaniak, T .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :758-767
[6]   Noise-induced basin hopping in a gearbox model [J].
de Souza, SLT ;
Caldas, IL ;
Viana, RL ;
Batista, AM ;
Kapitaniak, T .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1523-1531
[7]   Bifurcations in Nonsmooth Dynamical Systems [J].
di Bernardo, Mario ;
Budd, Chris J. ;
Champneys, Alan R. ;
Kowalczyk, Piotr ;
Nordmark, Arne B. ;
Tost, Gerard Olivar ;
Piiroinen, Petri T. .
SIAM REVIEW, 2008, 50 (04) :629-701
[8]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[9]   BIFURCATION OF MAPS OF INTERVAL [J].
GUCKENHEIMER, J .
INVENTIONES MATHEMATICAE, 1977, 39 (02) :165-178
[10]  
Holmes P, 2013, Applied Mathematical Sciences