Dynamics of the bubble front in the Richtmyer-Meshkov instability

被引:0
作者
Abarzhi, SI [1 ]
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
关键词
nonlinearity; non-local dynamics; Richtmyer-Meshkov instability;
D O I
10.1017/S0263034603213215
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe the evolution of the large-scale coherent structure of bubbles and spikes in the Richtmyer-Meshkov instability. Our multiple harmonic analysis accounts for a non-local character of the nonlinear dynamics. A new type of the evolution of the bubble front is found. A comparison to so-called "Layzer-type" local models is performed.
引用
收藏
页码:425 / 428
页数:4
相关论文
共 18 条
[1]   Nonlinear evolution of unstable fluid interface [J].
Abarzhi, SI .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036301
[2]   A new type of the evolution of the bubble front in the Richtmyer-Meshkov instability [J].
Abarzhi, SI .
PHYSICS LETTERS A, 2002, 294 (02) :95-100
[3]   Asymptotic behavior of three-dimensional bubbles in the Richtmyer-Meshkov instability [J].
Abarzhi, SI .
PHYSICS OF FLUIDS, 2001, 13 (10) :2866-2875
[4]  
ALESHIN AN, 1990, DOKL AKAD NAUK SSSR+, V310, P1105
[5]   POWER LAWS AND SIMILARITY OF RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV MIXING FRONTS AT ALL DENSITY RATIOS [J].
ALON, U ;
HECHT, J ;
OFER, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :534-537
[6]  
[Anonymous], 1969, FLUID DYNAM+
[7]   NUMERICAL INVESTIGATION OF RICHTMYER-MESHKOV INSTABILITY USING FRONT TRACKING [J].
HOLMES, RL ;
GROVE, JW ;
SHARP, DH .
JOURNAL OF FLUID MECHANICS, 1995, 301 :51-64
[8]   Richtmyer-Meshkov instability growth: experiment, simulation and theory [J].
Holmes, RL ;
Dimonte, G ;
Fryxell, B ;
Gittings, ML ;
Grove, JW ;
Schneider, M ;
Sharp, DH ;
Velikovich, AL ;
Weaver, RP ;
Zhang, Q .
JOURNAL OF FLUID MECHANICS, 1999, 389 :55-79
[9]  
INOGAMOV NA, 2001, 8 INT WORKSH PHYS CO
[10]   Experimental study of incompressible Richtmyer-Meshkov instability [J].
Jacobs, JW ;
Sheeley, JM .
PHYSICS OF FLUIDS, 1996, 8 (02) :405-415