QUANTUM OSTROWSKI TYPE INEQUALITIES FOR PRE-INVEX FUNCTIONS

被引:1
作者
Ali, Muhammad Aamir [1 ]
Budak, Huseyin [2 ]
Sarikaya, Mehmet Zeki [2 ]
Set, Erhan [3 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210023, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
[3] Ordu Univ, Fac Sci & Arts, Dept Math, Ordu, Turkey
关键词
Hermite-Hadamard inequality; Ostrowski inequality; q-integral; quantum calculus; pre-invex functions; HERMITE-HADAMARD INEQUALITIES; MIDPOINT-TYPE INEQUALITIES; INTEGRAL-INEQUALITIES; CONVEX;
D O I
10.1515/ms-2022-0101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using the quantum derivatives and quantum integrals, we prove some new quantum Ostrowski's type inequalities for pre-invex functions. Furthermore, in the special cases of newly developed inequalities, we obtain different new and existing Ostrowski's type inequalities.
引用
收藏
页码:1489 / 1500
页数:12
相关论文
共 37 条
  • [1] Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Akkurt, Abdullah
    Chu, Yu-Ming
    [J]. OPEN MATHEMATICS, 2021, 19 : 440 - 449
  • [2] On some new quantum midpoint-type inequalities for twice quantum differentiable convex functions
    Ali, Muhammad Aamir
    Alp, Necmettin
    Budak, Huseyin
    Chu, Yu-Ming
    Zhang, Zhiyue
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 427 - 439
  • [3] SIMPSON'S AND NEWTON'S TYPE QUANTUM INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Sehar, Mubarra
    Murtaza, Ghulam
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (01): : 193 - 209
  • [4] Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
    Ali, Muhammad Aamir
    Chu, Yu-Ming
    Budak, Hueseyin
    Akkurt, Abdullah
    Yildirim, Hueseyin
    Zahid, Manzoor Ahmed
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [5] New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Huseyin
    Agarwal, Praveen
    Murtaza, Ghulam
    Chu, Yu-Ming
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
  • [7] Some new Simpson's type inequalities for coordinated convex functions in quantum calculus
    Ali, Muhammad Aamir
    Budak, Huseyin
    Zhang, Zhiyue
    Yildirim, Huseyin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4515 - 4540
  • [8] Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense
    Alomari, M.
    Darus, M.
    Dragomir, S. S.
    Cerone, P.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1071 - 1076
  • [9] Alp N, 2020, APPL MATH E-NOTES, V20, P341
  • [10] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203