Parametric Translational Compensation for ISAR Imaging Based on Cascaded Subaperture Integration With Application to Asteroid Imaging

被引:14
作者
Ding, Zegang [1 ,2 ,3 ]
Liu, Siyuan [1 ,2 ]
Li, Yinchuan [1 ,2 ]
You, Pengjie [1 ,2 ]
Zhou, Xu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Key Lab Embedded Real Time Informat Proc Technol, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401331, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Imaging; Radar imaging; Signal to noise ratio; Scattering; Parameter estimation; Solar system; Apertures; Cascaded subaperture integration; generalized Radon-Fourier transform (GRFT); inverse synthetic aperture radar (ISAR) imaging; particle swarm optimization (PSO); translational compensation method; RADON-FOURIER TRANSFORM; RADAR TARGET DETECTION; MANEUVERING TARGET; ALGORITHM; MODEL;
D O I
10.1109/TGRS.2020.3043028
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Translational compensation is a crucial step in inverse synthetic aperture radar (ISAR) imaging. However, nonparametric compensation methods may collapse under the condition of a low signal-to-noise ratio (SNR), and high-order parametric compensation methods usually have a large computational load. In this article, two cascaded integration methods are proposed to solve the problems above based on the generalized Radon-Fourier transform (GRFT). The first method models the translational motion as polynomial and utilizes the proposed subaperture GRFT (SAGRFT), which is a fast implementation of the GRFT, to estimate the translational parameters. The SAGRFT divides the full aperture into several subapertures and realizes coherent integration by implementing moving target detection (MTD) within subapertures and the GRFT among subapertures. In addition, the distribution property of the blind speed side lobes (BSSLs) generated by the SAGRFT is analyzed. On this basis, the second method based on metaheuristic algorithms is proposed to further accelerate the parameter estimation process and solve the BSSLs problem. The proposed methods can not only play a role in stealth target imaging but also be utilized in near-Earth asteroid (NEA) imaging in radar astronomy. Finally, the numerical simulations of asteroid imaging and the experimental results of plane imaging are demonstrated to verify the performance advantages of the proposed methods.
引用
收藏
页数:17
相关论文
共 55 条
[21]   Adaptive Translational Motion Compensation Method for ISAR Imaging Under Low SNR Based on Particle Swarm Optimization [J].
Liu, Lei ;
Zhou, Feng ;
Tao, Mingliang ;
Sun, Pange ;
Zhang, Zijing .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (11) :5146-5157
[22]   Radar observations and a physical model of Asteroid 1580 Betulia [J].
Magri, Christopher ;
Ostro, Steven J. ;
Scheeres, Daniel J. ;
Nolan, Michael C. ;
Giorgini, Jon D. ;
Benner, Lance A. M. ;
Margot, Jean-Luc .
ICARUS, 2007, 186 (01) :152-177
[23]   Digital elevation models of the moon from earth-based radar interferometry [J].
Margot, JL ;
Campbell, DB ;
Jurgens, RF ;
Slade, MA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (02) :1122-1133
[24]   Radar imaging and physical characterization of near-Earth Asteroid (162421) 2000 ET70 [J].
Naidu, Shantanu P. ;
Margot, Jean-Luc ;
Busch, Michael W. ;
Taylor, Patrick A. ;
Nolan, Michael C. ;
Brozovic, Marina ;
Benner, Lance A. M. ;
Giorgini, Jon D. ;
Magri, Christopher .
ICARUS, 2013, 226 (01) :323-335
[25]  
Ostro S. J, ASTEROID RADAR RES
[26]   Parametric inverse synthetic aperture radar manoeuvring target motion compensation based on particle swarm optimiser [J].
Peng, S. -B. ;
Xu, J. ;
Peng, Y. -N. ;
Xiang, J. -B. .
IET RADAR SONAR AND NAVIGATION, 2011, 5 (03) :305-314
[27]   SAR imaging of moving targets [J].
Perry, RP ;
DiPietro, RC ;
Fante, RL .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1999, 35 (01) :188-200
[28]  
Pravec P, 2002, ASTEROID ROTATIONS, V113
[29]   Fast implementation of generalised Radon-Fourier transform for manoeuvring radar target detection [J].
Qian, L. -C. ;
Xu, J. ;
Xia, X-G. ;
Sun, W. -F. ;
Long, T. ;
Peng, Y. -N. .
ELECTRONICS LETTERS, 2012, 48 (22) :1427-1428
[30]  
Richards Mark A., 2010, Fundamentals of Radar Signal Processing