Investigation on Bending over Sheave Fatigue Life Determination of Rotation Resistant Steel Wire Rope

被引:11
作者
Onur, Y. A. [1 ]
Imrak, C. E. [2 ]
Onur, T. O. [1 ]
机构
[1] Bulent Ecevit Univ, TR-67100 Zonguldak, Turkey
[2] Istanbul Tech Univ, TR-34437 Istanbul, Turkey
关键词
Bending over sheave fatigue; Rotation resistant rope; Artificial neural networks; Fatigue life; WEAR EVOLUTION; NEURAL-NETWORK; STRANDED ROPE; DEGRADATION;
D O I
10.1007/s40799-017-0188-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Investigation on theoretical and experimental determination of bending over sheave fatigue lifetimes of rotation resistant steel wire ropes has been conducted. Effects of sheave size and tensile load on bending over sheave fatigue lifetimes of investigated rope have been presented. Bending over sheave fatigue life prediction according to effects of tensile load and sheave diameter has been presented by using artificial neural networks. The results point out that constructed ANN model estimations and experimental results have powerful correlation.
引用
收藏
页码:475 / 482
页数:8
相关论文
共 22 条
[1]   Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks [J].
Al-Assaf, Y ;
El Kadi, H .
COMPOSITE STRUCTURES, 2001, 53 (01) :65-71
[2]  
[Anonymous], 1974, 150202 DIN
[3]   Wear evolution in a stranded rope under cyclic bending: Implications to fatigue life estimation [J].
Argatov, I. I. ;
Gomez, X. ;
Tato, W. ;
Urchegui, M. A. .
WEAR, 2011, 271 (11-12) :2857-2867
[4]  
Demuth H.B., 2000, Neural Network Toolbox
[5]  
For Use with Matlab
[6]  
Computation, Visualization, Programming
[7]  
Users Guide, Version 4
[8]  
Feyrer K., 2007, Wire Ropes, Tension, Endurance, Reliability
[9]   Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests [J].
Genel, K .
INTERNATIONAL JOURNAL OF FATIGUE, 2004, 26 (10) :1027-1035
[10]   Bending fatigue tests on a metallic wire rope for aircraft rescue hoist [J].
Giglio, M ;
Manes, A .
ENGINEERING FAILURE ANALYSIS, 2003, 10 (02) :223-235