Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity

被引:20
作者
Noh, Jungsik [1 ]
Lee, Sangyeol [2 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Clin Sci, Quantitat Biomed Res Ctr, Dallas, TX 75390 USA
[2] Seoul Natl Univ, Dept Stat, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
ARMA-AGARCH models; asymptotic normality; conditional autoregressive value-at-risk models; conditional location-scale time series models; identifiability condition; quantile regression; MAXIMUM-LIKELIHOOD-ESTIMATION; ARMA-GARCH/IGARCH MODELS; THRESHOLD GARCH MODELS; ESTIMATORS; INFERENCE; TESTS; PARAMETERS; ERRORS; RISK; ARCH;
D O I
10.1111/sjos.12199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers quantile regression for a wide class of time series models including autoregressive and moving average (ARMA) models with asymmetric generalized autoregressive conditional heteroscedasticity errors. The classical mean-variance models are reinterpreted as conditional location-scale models so that the quantile regression method can be naturally geared into the considered models. The consistency and asymptotic normality of the quantile regression estimator is established in location-scale time series models under mild conditions. In the application of this result to ARMA-generalized autoregressive conditional heteroscedasticity models, more primitive conditions are deduced to obtain the asymptotic properties. For illustration, a simulation study and a real data analysis are provided.
引用
收藏
页码:700 / 720
页数:21
相关论文
共 44 条
[1]  
[Anonymous], 200849 CREATES
[2]  
[Anonymous], 2005, ECONOMETRIC SOC MONO
[3]  
[Anonymous], 1991, Nonparametric and Semiparametric Methods in Econometrics and Statistics
[4]  
[Anonymous], P 5 BERK S MATH STAT
[5]  
[Anonymous], 1991, TIME SERIES THEORY M
[6]   ASYMPTOTIC NORMALITY OF THE QUASI-MAXIMUM LIKELIHOOD ESTIMATOR FOR MULTIDIMENSIONAL CAUSAL PROCESSES [J].
Bardet, Jean-Marc ;
Wintenberger, Olivier .
ANNALS OF STATISTICS, 2009, 37 (5B) :2730-2759
[7]  
Bassett G.W., 1986, ECONOMET THEOR, V2, P191, DOI DOI 10.1017/S0266466600011488
[8]  
Berkes I, 2004, ANN STAT, V32, P633
[9]   GARCH processes:: structure and estimation [J].
Berkes, I ;
Horváth, L ;
Kokoszka, P .
BERNOULLI, 2003, 9 (02) :201-227
[10]  
Billingsley P., 1961, Proceedings of the American Mathematical Society, V12, P788