Isolated singularities of solutions to quasi-linear elliptic equations with absorption

被引:17
作者
Liskevich, Vitali [1 ]
Skrypnik, I. I. [2 ]
机构
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Inst Appl Math & Mech, Donetsk, Ukraine
关键词
isolated singularities; quasi-linear equations; kato-type classes;
D O I
10.1016/j.jmaa.2007.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of removability of isolated singularities for a general second-order quasi-linear equation in divergence form -divA(x, u, del u) + a(0)(x, u) + g(x, u) = 0 in a punctured domain Omega\{0}, where Omega is a domain in R-n, n >= 3. The model example is the equation -Delta(p)u + gu vertical bar u vertical bar(p-2) + u vertical bar u vertical bar(q-1) = 0, q > p-1 > 0, p < n. Assuming that the lower-order terms satisfy certain non-linear Kato-type conditions, we prove that for q >= n(p-1)/n-p all point singularities of the above equation are removable, thus extending the seminal result of Brezis and Veron. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 13 条
[1]   Schrondiger type and relaxed Dirichlet problems for the subelliptic p-Laplacian [J].
Biroli, M .
POTENTIAL ANALYSIS, 2001, 15 (1-2) :1-16
[2]  
BIROLI M, 1997, REND ACAD NAZ SCI 40, V21, P235
[3]  
BREZIS H, 1980, ARCH RATION MECH AN, V75, P1
[4]   HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS AND THE CONTINUITY OF SOLUTIONS [J].
CHIARENZA, F ;
FABES, E ;
GAROFALO, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (03) :415-425
[5]   THE WIENER TEST AND POTENTIAL ESTIMATES FOR QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
KILPELAINEN, T ;
MALY, J .
ACTA MATHEMATICA, 1994, 172 (01) :137-161
[6]  
LISKEVICH V, IN PRESS POTENTIAL A
[7]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS [J].
SERRIN, J .
ACTA MATHEMATICA, 1964, 111 (3-4) :247-302
[8]   SCHODINGER SEMIGROUPS [J].
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :447-526
[9]  
Skrypnik II., 2005, UKR MAT VISN, V2, P219
[10]  
Skrypnik II., 2005, UKR MATH J, V57, P972