A comparative review of four formulations of noncommutative quantum mechanics

被引:82
作者
Gouba, Laure [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2016年 / 31卷 / 19期
关键词
Noncommutative geometry; noncommutative quantum mechanics; formalism; star product; Bopp's shift; Seiberg-Witten map; path-integral; Weyl-Wigner transform; FIELD-THEORY; LANDAU PROBLEM; REPRESENTATIONS; PLANE; PHASE; SCATTERING; SPECTRUM;
D O I
10.1142/S0217751X16300258
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Four formulations of quantum mechanics on noncommutative Moyal phase spaces are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. Although all these formulations represent quantum mechanics on a phase space with the same deformed Heisenberg algebra, there are mathematical and conceptual differences which we discuss.
引用
收藏
页数:15
相关论文
共 92 条
[81]   More on mixed boundary conditions and D-branes bound states [J].
Sheikh-Jabbari, MM .
PHYSICS LETTERS B, 1998, 425 (1-2) :48-54
[82]   Isotropic representation of the noncommutative 2D harmonic oscillator [J].
Smailagic, A ;
Spallucci, E .
PHYSICAL REVIEW D, 2002, 65 (10)
[83]   Feymnan path integral on the non-commutative plane [J].
Smailagic, A ;
Spallucci, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (33) :L467-L471
[84]   Noncommutative 3D harmonic oscillator [J].
Smailagic, A ;
Spallucci, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (26) :L363-L368
[85]  
SNYDER HS, 1947, PHYS REV, V71, P38, DOI 10.1103/PhysRev.71.38
[86]  
Susskind L., ARXIVHEPTH0101029
[87]   Quantum field theory on noncommutative spaces [J].
Szabo, RJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 378 (04) :207-299
[88]   A coherent-state-based path integral for quantum mechanics on the Moyal plane [J].
Tan, H. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (49) :15299-15309
[89]   The HMW effect in noncommutative quantum mechanics [J].
Wang, Jianhua ;
Li, Kang .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (09) :2197-2202
[90]   Quantum mechanics and Group theory. [J].
Weyl, H. .
ZEITSCHRIFT FUR PHYSIK, 1927, 46 (1-2) :1-46