Von Neumann Regular Cellular Automata

被引:4
作者
Castillo-Ramirez, Alonso [1 ]
Gadouleau, Maximilien [2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Matemat, Guadalajara, Jalisco, Mexico
[2] Univ Durham, Sch Engn & Comp Sci, South Rd, Durham DH1 3LE, England
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | 2017年 / 10248卷
关键词
Cellular automata; Linear cellular automata; Monoids; von Neumann regular elements; Generalised inverses;
D O I
10.1007/978-3-319-58631-1_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space A(G) defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over A(G). In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element tau is an element of CA(G; A) is von Neumann regular (or simply regular) if there exists sigma is an element of CA(G; A) such that tau circle sigma circle tau = tau and sigma circle tau circle sigma = sigma, where circle is the composition of functions. Such an element s is called a generalised inverse of tau. The monoid CA(G; A) itself is regular if all its elements are regular. We establish that CA(G; A) is regular if and only if vertical bar G vertical bar = 1 or vertical bar A vertical bar = 1, and we characterise all regular elements in CA(G; A) when G and A are both finite. Furthermore, we study regular linear CA when A = V is a vector space over a field F; in particular, we show that every regular linear CA is invertible when G is torsion-free (e.g. when G = Z(d), d >= 1), and that every linear CA is regular when V is finite-dimensional and G is locally finite with char(F) inverted iota circle (g) for all g is an element of G.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [41] Sequentializing cellular automata
    Kari, Jarkko
    Salo, Ville
    Worsch, Thomas
    [J]. NATURAL COMPUTING, 2020, 19 (04) : 759 - 772
  • [42] Simulation of cellular automata
    Worsch, T
    [J]. FUTURE GENERATION COMPUTER SYSTEMS, 1999, 16 (2-3) : 157 - 170
  • [43] Probabilistic Cellular Automata
    Agapie, Alexandru
    Andreica, Anca
    Giuclea, Marius
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2014, 21 (09) : 699 - 708
  • [44] Alternation on cellular automata
    Matamala, M
    [J]. THEORETICAL COMPUTER SCIENCE, 1997, 180 (1-2) : 229 - 241
  • [45] The identification of cellular automata
    Zhao, Y.
    Billings, S. A.
    [J]. JOURNAL OF CELLULAR AUTOMATA, 2007, 2 (01) : 47 - 65
  • [46] Multilayered cellular automata
    Bandini, S
    Mauri, G
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 99 - 113
  • [47] Nondeterministic Cellular Automata
    Di Lena, Pietro
    Margara, Luciano
    [J]. INFORMATION SCIENCES, 2014, 287 : 13 - 25
  • [48] Cellular Automata Applications
    Andreica, Anca
    [J]. 2019 21ST INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2019), 2020, : 3 - 3
  • [49] Programmable cellular automata
    Kokolakis, I
    Andreadis, I
    Tsalides, P
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 1999, 9 (5-6) : 255 - 260
  • [50] Sequentializing cellular automata
    Jarkko Kari
    Ville Salo
    Thomas Worsch
    [J]. Natural Computing, 2020, 19 : 759 - 772