Von Neumann Regular Cellular Automata

被引:4
|
作者
Castillo-Ramirez, Alonso [1 ]
Gadouleau, Maximilien [2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Matemat, Guadalajara, Jalisco, Mexico
[2] Univ Durham, Sch Engn & Comp Sci, South Rd, Durham DH1 3LE, England
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | 2017年 / 10248卷
关键词
Cellular automata; Linear cellular automata; Monoids; von Neumann regular elements; Generalised inverses;
D O I
10.1007/978-3-319-58631-1_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space A(G) defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over A(G). In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element tau is an element of CA(G; A) is von Neumann regular (or simply regular) if there exists sigma is an element of CA(G; A) such that tau circle sigma circle tau = tau and sigma circle tau circle sigma = sigma, where circle is the composition of functions. Such an element s is called a generalised inverse of tau. The monoid CA(G; A) itself is regular if all its elements are regular. We establish that CA(G; A) is regular if and only if vertical bar G vertical bar = 1 or vertical bar A vertical bar = 1, and we characterise all regular elements in CA(G; A) when G and A are both finite. Furthermore, we study regular linear CA when A = V is a vector space over a field F; in particular, we show that every regular linear CA is invertible when G is torsion-free (e.g. when G = Z(d), d >= 1), and that every linear CA is regular when V is finite-dimensional and G is locally finite with char(F) inverted iota circle (g) for all g is an element of G.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [21] Von Neumann regular semimodule II
    Sen, M. K.
    Maity, S. K.
    Swomin, Sabnam
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (01)
  • [22] Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice
    Uguz, Selman
    Redjepov, Shovkat
    Acar, Ecem
    Akin, Hasan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (06):
  • [23] Beaconless Cooperative Localization in Wireless Sensor network Implementing Cellular Automata Von Neumann Neighborhood
    Banerjee, Chayan
    Das, Arnab
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 550 - 554
  • [24] Constructibility of signal-crossing solutions in von Neumann 29-state cellular automata
    Buckley, WR
    Mukherjee, A
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 395 - 403
  • [25] THE TELESCOPE CONJECTURE FOR VON NEUMANN REGULAR RINGS
    Zhang, Xiaolei
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 35 : 90 - 94
  • [26] On 2-von Neumann regular rings
    Mahdou, N
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (10) : 3489 - 3496
  • [27] Decidable properties for regular cellular automata
    Di Lena, Pietro
    Fourth IFIP International Conference on Theoretical Computer Science - TCS 2006, 2006, 209 : 185 - 196
  • [28] Larders from Von Neumann Regular Rings
    Gillibert, Pierre
    Wehrung, Friedrich
    FROM OBJECTS TO DIAGRAMS FOR RANGES OF FUNCTORS, 2011, 2029 : 131 - 138
  • [29] On von Neumann regular rings with weak comparability
    Kutami, M
    JOURNAL OF ALGEBRA, 2003, 265 (01) : 285 - 298
  • [30] EXT AND VON NEUMANN REGULAR-RINGS
    TRLIFAJ, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (02) : 324 - 332