Von Neumann Regular Cellular Automata

被引:4
作者
Castillo-Ramirez, Alonso [1 ]
Gadouleau, Maximilien [2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Matemat, Guadalajara, Jalisco, Mexico
[2] Univ Durham, Sch Engn & Comp Sci, South Rd, Durham DH1 3LE, England
来源
CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2017) | 2017年 / 10248卷
关键词
Cellular automata; Linear cellular automata; Monoids; von Neumann regular elements; Generalised inverses;
D O I
10.1007/978-3-319-58631-1_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any group G and any set A, a cellular automaton (CA) is a transformation of the configuration space A(G) defined via a finite memory set and a local function. Let CA(G; A) be the monoid of all CA over A(G). In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element tau is an element of CA(G; A) is von Neumann regular (or simply regular) if there exists sigma is an element of CA(G; A) such that tau circle sigma circle tau = tau and sigma circle tau circle sigma = sigma, where circle is the composition of functions. Such an element s is called a generalised inverse of tau. The monoid CA(G; A) itself is regular if all its elements are regular. We establish that CA(G; A) is regular if and only if vertical bar G vertical bar = 1 or vertical bar A vertical bar = 1, and we characterise all regular elements in CA(G; A) when G and A are both finite. Furthermore, we study regular linear CA when A = V is a vector space over a field F; in particular, we show that every regular linear CA is invertible when G is torsion-free (e.g. when G = Z(d), d >= 1), and that every linear CA is regular when V is finite-dimensional and G is locally finite with char(F) inverted iota circle (g) for all g is an element of G.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [1] On von Neumann regularity of cellular automata
    Ville Salo
    Natural Computing, 2023, 22 : 527 - 538
  • [2] On von Neumann regularity of cellular automata
    Salo, Ville
    NATURAL COMPUTING, 2023, 22 (03) : 527 - 538
  • [3] The Cryptographic Properties of Von Neumann Cellular Automata
    Escuadra Burrieza, J.
    Martin del Rey, A.
    Perez Iglesias, J. L.
    Rodriguez Sanchez, G.
    Queiruga Dios, A.
    de la Villa Cuenca, A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (04): : 765 - 778
  • [4] On irreversibility of von Neumann additive cellular automata on grids
    Soma, NY
    Melo, JP
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (05) : 861 - 866
  • [5] A Characterization of von Neumann Neighbor Number-Conserving Cellular Automata
    Tanimoto, Naonori
    Imai, Katsunobu
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (01) : 39 - 53
  • [6] Von Neumann hybrid cellular automata for generating deterministic test sequences
    Kagaris, D
    Tragoudas, S
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2001, 6 (03) : 308 - 321
  • [7] Number-conserving cellular automata with a von Neumann neighborhood of range one
    Wolnik, Barbara
    Dzedzej, Adam
    Baetens, Jan M.
    De Baets, Bernard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (43)
  • [8] Elementary, finite and linear vN-regular cellular automata
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    INFORMATION AND COMPUTATION, 2020, 274
  • [9] Cellular automata modelling of dendritic crystal growth based on Moore and von Neumann neighbourhoods
    Zhao, Y.
    Billings, S. A.
    Coca, D.
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2009, 6 (02) : 119 - 125
  • [10] Beaconless Cooperative Localization in Wireless Sensor network Implementing Cellular Automata Von Neumann Neighborhood
    Banerjee, Chayan
    Das, Arnab
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 550 - 554