Nearest-neighbour level spacings for the non-periodic discrete nonlinear Schrodinger equation

被引:13
作者
Chefles, A
机构
[1] Department of Physics and Applied Physics, University of Strathclyde
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 15期
关键词
D O I
10.1088/0305-4470/29/15/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase space of the classical non-periodic discrete nonlinear Schrodinger equation contains both a chaotic region and a continuous family of periodic orbits. In a bid to determine the extent to which this mixed behaviour manifests itself in the transition to quantum mechanics, we study the nearest-neighbour level-spacing distribution of the corresponding quantum energy levels. This is compared with the optimal Berry-Robnik and Brody distributions, which continuously interpolate between regular and chaotic level spacing statistics.
引用
收藏
页码:4515 / 4526
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[2]   ON LOCALIZATION IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
BANG, O ;
RASMUSSEN, JJ ;
CHRISTIANSEN, PL .
PHYSICA D, 1993, 68 (01) :169-173
[3]   THE 3-WAVE-GUIDE NONLINEAR DIRECTIONAL COUPLER - THE CENTER WAVE-GUIDE EXCITATION [J].
BERNSTEIN, LJ .
OPTICS COMMUNICATIONS, 1992, 94 (05) :406-416
[4]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[5]  
BERRY MV, 1984, J PHYS A, V17, P413
[6]   STATISTICAL MEASURE FOR REPULSION OF ENERGY-LEVELS [J].
BRODY, TA .
LETTERE AL NUOVO CIMENTO, 1973, 7 (12) :482-484
[7]   SPECTROSCOPIC EVIDENCE FOR DAVYDOV-LIKE SOLITONS IN ACETANILIDE [J].
CARERI, G ;
BUONTEMPO, U ;
GALLUZZI, F ;
SCOTT, AC ;
GRATTON, E ;
SHYAMSUNDER, E .
PHYSICAL REVIEW B, 1984, 30 (08) :4689-4702
[8]   STABILITY OF STATIONARY SOLUTIONS OF THE DISCRETE SELF-TRAPPING EQUATION [J].
CARR, J ;
EILBECK, JC .
PHYSICS LETTERS A, 1985, 109 (05) :201-204
[9]  
CHEFLES A, 1996, J MOD OPTIC, V40, P709
[10]   CLASSICAL AND QUANTUM ANALYSIS OF CHAOS IN THE DISCRETE SELF-TRAPPING EQUATION [J].
CRUZEIROHANSSON, L ;
FEDDERSEN, H ;
FLESCH, R ;
CHRISTIANSEN, PL ;
SALERNO, M ;
SCOTT, AC .
PHYSICAL REVIEW B, 1990, 42 (01) :522-526