A panconnectivity theorem for bipartite graphs

被引:3
作者
Du, Hui [1 ]
Faudree, Ralph J. [2 ]
Lehel, Jeno [3 ,4 ]
Yoshimoto, Kiyoshi [5 ]
机构
[1] Nagakura 2722, Karuizawa, Nagano 3890111, Japan
[2] Univ Memphis, Memphis, TN 38152 USA
[3] Univ Louisville, Louisville, KY 40292 USA
[4] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[5] Nihon Univ, Tokyo 1018308, Japan
关键词
Bipartite graph; Circumference; Panconnectivity; PANCYCLICITY;
D O I
10.1016/j.disc.2017.08.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple m x n bipartite graph with m >= n. We prove that if the minimum degree of G satisfies delta(G) >= m/2 + 1, then G is bipanconnected: for every pair of vertices x, y, and for every appropriate integer 2 <= 2 <= 2n, there is an x, y-path of length t in G. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 154
页数:4
相关论文
共 7 条
[1]   BICLOSURE AND BISTABILITY IN A BALANCED BIPARTITE GRAPH [J].
AMAR, D ;
FAVARON, O ;
MAGO, P .
JOURNAL OF GRAPH THEORY, 1995, 20 (04) :513-529
[2]  
[Anonymous], PERIOD MATH HUNGAR
[3]  
Chartrand G., 2005, Graphs and Digraphs, VFourth
[4]   Locating Pairs of Vertices on a Hamiltonian Cycle in Bigraphs [J].
Faudree, Ralph J. ;
Lehel, Jeno ;
Yoshimoto, Kiyoshi .
GRAPHS AND COMBINATORICS, 2016, 32 (03) :963-986
[5]   Panconnectivity and Edge-Pancyclicity of k-Ary n-Cubes [J].
Hsieh, Sun-Yuan ;
Lin, Tsong-Jie .
NETWORKS, 2009, 54 (01) :1-11
[6]   LONG CYCLES IN BIPARTITE GRAPHS [J].
JACKSON, B .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) :118-131
[7]  
Kao SS, 2012, ARS COMBINATORIA, V105, P231