On the reversibility of the compressible, inviscid, linearized Navier-Stokes equations: Implications for numerical schemes

被引:0
|
作者
Bertsch, R. [1 ]
Girimaji, S. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TURBULENCE HEAT AND MASS TRANSFER (THMT-15) | 2015年
关键词
TIME-REVERSIBILITY; TURBULENCE;
D O I
10.1615/ICHMT.2015.THMT-15.830
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Time reversibility is an important characteristic of inviscid Navier-Stokes equations. While the physical implications of the reversibility are well understood at low speeds, the ramifications are less evident in compressible flows. In this paper, we examine the reversibility of flow-thermodynamics interactions at high Mach numbers. Analytical and numerical investigations are carried out in a shear flow at the linear rapid distortion limit. Implications of the findings for closure modeling and flow control are briefly discussed.
引用
收藏
页码:411 / 414
页数:4
相关论文
共 50 条
  • [41] Predicting foreign currency exchange rates using the numerical solution of the incompressible Navier-Stokes equations
    Kartono, Agus
    Febriyanti, Marina
    Wahyudi, Setyanto Tri
    Irmansyah
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 560
  • [42] INVARIANT MEASURES FOR THE 3D NAVIER-STOKES-VOIGT EQUATIONS AND THEIR NAVIER-STOKES LIMIT
    Ramos, Fabio
    Titi, Edriss S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 375 - 403
  • [43] Phase transition in time-reversible Navier-Stokes equations
    Shukla, Vishwanath
    Dubrulle, Berengere
    Nazarenko, Sergey
    Krstulovic, Giorgio
    Thalabard, Simon
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [44] Efficient and scalable discretization of the Navier-Stokes equations with LPS modeling
    Haferssas, Ryadh
    Jolivet, Pierre
    Rubino, Samuele
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 333 : 371 - 394
  • [45] Variational Multiscale Proper Orthogonal Decomposition: Navier-Stokes Equations
    Iliescu, Traian
    Wang, Zhu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 641 - 663
  • [47] Rigorous investigation of the Navier-Stokes momentum equations and correlation tensors
    Oz, Yahya
    AIP ADVANCES, 2021, 11 (05)
  • [48] A HYBRID UNSTRUCTURED/SPECTRAL METHOD FOR THE RESOLUTION OF NAVIER-STOKES EQUATIONS
    Corral, Roque
    Crespo, Javier
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 7, PTS A AND B, 2009, : 409 - 418
  • [49] Subgrid models preserving the symmetry group of the Navier-Stokes equations
    Razafindralandy, D
    Hamdouni, A
    COMPTES RENDUS MECANIQUE, 2005, 333 (06): : 481 - 486
  • [50] Deep learning of the spanwise-averaged Navier-Stokes equations
    Font, Bernat
    Weymouth, Gabriel D.
    Nguyen, Vinh-Tan
    Tutty, Owen R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 434