On the reversibility of the compressible, inviscid, linearized Navier-Stokes equations: Implications for numerical schemes

被引:0
|
作者
Bertsch, R. [1 ]
Girimaji, S. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TURBULENCE HEAT AND MASS TRANSFER (THMT-15) | 2015年
关键词
TIME-REVERSIBILITY; TURBULENCE;
D O I
10.1615/ICHMT.2015.THMT-15.830
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Time reversibility is an important characteristic of inviscid Navier-Stokes equations. While the physical implications of the reversibility are well understood at low speeds, the ramifications are less evident in compressible flows. In this paper, we examine the reversibility of flow-thermodynamics interactions at high Mach numbers. Analytical and numerical investigations are carried out in a shear flow at the linear rapid distortion limit. Implications of the findings for closure modeling and flow control are briefly discussed.
引用
收藏
页码:411 / 414
页数:4
相关论文
共 50 条
  • [21] Discrete Energy-Conservation Properties in the Numerical Simulation of the Navier-Stokes Equations
    Coppola, Gennaro
    Capuano, Francesco
    de Luca, Luigi
    APPLIED MECHANICS REVIEWS, 2019, 71 (01)
  • [22] Fast time implicit-explicit discontinuous Galerkin method for the compressible Navier-Stokes equations
    Renac, Florent
    Gerald, Sophie
    Marmignon, Claude
    Coquel, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 272 - 291
  • [23] Coupled solution of the steady compressible Navier-Stokes equations and the k-epsilon turbulence equations with a multigrid method
    Dick, E
    Steelant, J
    APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) : 49 - 61
  • [24] Singularity of Navier-Stokes Equations Leading to Turbulence
    Dou, Hua-Shu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (03) : 527 - 553
  • [25] On Some Properties of the Navier-Stokes System of Equations
    Rubina, L. I.
    Ul'yanov, O. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 : S163 - S174
  • [26] Stochastic Navier-Stokes equations for turbulent flows
    Mikulevicius, R
    Rozovskii, BL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) : 1250 - 1310
  • [27] Bounds on Kolmogorov spectra for the Navier-Stokes equations
    Biryuk, Andrei
    Craig, Walter
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (04) : 426 - 438
  • [28] NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
    Jin, Xiaowei
    Cai, Shengze
    Li, Hui
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [29] Vorticity moments in four numerical simulations of the 3D Navier-Stokes equations
    Donzis, Diego A.
    Gibbon, John D.
    Gupta, Anupam
    Kerr, Robert M.
    Pandit, Rahul
    Vincenzi, Dario
    JOURNAL OF FLUID MECHANICS, 2013, 732 : 316 - 331
  • [30] The Inviscid Limit for the Navier–Stokes Equations with Slip Condition on Permeable Walls
    N. V. Chemetov
    F. Cipriano
    Journal of Nonlinear Science, 2013, 23 : 731 - 750