Interlayer Coupling Induced Phonon-Glass-Electron-Crystal Behavior in van der Waals Heterostructure PtSe2/γ-GeSe

被引:11
作者
Sajjad, Muhammad [1 ]
Singh, Nirpendra [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi 127788, U Arab Emirates
关键词
first-principles calculations; double-layer honeycomb lattice; phonon-glass-electron-crystal; lattice thermal conductivity; phonon avoided crossing; TOTAL-ENERGY CALCULATIONS; THERMAL-CONDUCTIVITY; SEMICONDUCTOR; FIGURE; MERIT;
D O I
10.1021/acsaem.2c02302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the electronic band structure and interlayer coupling induced phonon-glass-electron-crystal behavior in the van der Waals heterostructure PtSe2/gamma-GeSe. The heterostructure is dynamically stable and possesses an indirect band gap of 0.63 eV (at the Heyd-Scuseria-Ernzerhof functional level) with type II band alignment. A low conduction band offset of 0.20 eV compared to the valence band offset of 0.92 eV suggests fluent electrons drive from gamma-GeSe to PtSe2. Interlayer coupling induced strong phonon coupling and a unique "avoided crossing" feature between longitudinal acoustic and lowlying optical phonon modes between K and Gamma points. Significant suppression of acoustic phonon modes and giant phonon scattering rates (a maximum value of 73.76 ps-1) results in a low lattice thermal conductivity of 1.20 W/(m center dot K) at 300 K after enforcing the mandatory rotational invariance condition. The calculated lattice thermal conductivity is 14 fold smaller than that of monolayer PtSe2 (16.97 W/(m center dot K)). The lattice thermal conductivity upsurges by 24% as the out-of-plane acoustic phonon dispersion undergoes linear dispersion, indicating the importance of pure quadratic flexural phonon dispersion. Our results disclose a strategy for having the phonon-glass-electron-crystal character in van der Waals heterostructures.
引用
收藏
页码:13610 / 13616
页数:7
相关论文
共 55 条
[1]   Exciton-Dominated Ultrafast Optical Response in Atomically Thin PtSe2 [J].
Bae, Seongkwang ;
Nah, Sanghee ;
Lee, Doeon ;
Sajjad, Muhammad ;
Singh, Nirpendra ;
Kang, Ku Min ;
Kim, Sanghoon ;
Kim, Geun-Ju ;
Kim, Jaekyun ;
Baik, Hionsuck ;
Lee, Kyusang ;
Sim, Sangwan .
SMALL, 2021, 17 (45)
[2]  
Bhorkar K., 2022, ACS APPL ELECTRON MA, V4, P4814
[3]   Physically founded phonon dispersions of few-layer materials and the case of borophene [J].
Carrete, Jesus ;
Li, Wu ;
Lindsay, Lucas ;
Broido, David A. ;
Gallego, Luis J. ;
Mingo, Natalio .
MATERIALS RESEARCH LETTERS, 2016, 4 (04) :204-211
[4]   Thermal Transport in Two-Dimensional Heterostructures [J].
Chen, Xue-Kun ;
Zeng, Yu-Jia ;
Chen, Ke-Qiu .
FRONTIERS IN MATERIALS, 2020, 7
[5]   A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures [J].
Chen, Xue-Kun ;
Liu, Jun ;
Peng, Zhi-Hua ;
Du, Dan ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[6]   Avoided crossing of rattler modes in thermoelectric materials [J].
Christensen, Mogens ;
Abrahamsen, Asger B. ;
Christensen, Niels B. ;
Juranyi, Fanni ;
Andersen, Niels H. ;
Lefmann, Kim ;
Andreasson, Jakob ;
Bahl, Christian R. H. ;
Iversen, Bo B. .
NATURE MATERIALS, 2008, 7 (10) :811-815
[7]  
Delaire O, 2011, NAT MATER, V10, P614, DOI [10.1038/nmat3035, 10.1038/NMAT3035]
[8]   Engineering of charge carriers via a two-dimensional heterostructure to enhance the thermoelectric figure of merit [J].
Ding, Guangqian ;
Wang, Cong ;
Gao, Guoying ;
Yao, Kailun ;
Dun, Chaochao ;
Feng, Chunbao ;
Li, Dengfeng ;
Zhang, Gang .
NANOSCALE, 2018, 10 (15) :7077-7084
[9]   The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning [J].
Eriksson, Fredrik ;
Fransson, Erik ;
Erhart, Paul .
ADVANCED THEORY AND SIMULATIONS, 2019, 2 (05)
[10]   Method to extract anharmonic force constants from first principles calculations [J].
Esfarjani, Keivan ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2008, 77 (14)