Lagrangian mean curvature flow in pseudo-Euclidean space

被引:10
作者
Huang, Rongli [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Indefinite metric; Self-expanding solution; Interior Schauder estimates; Logarithmic Monge-Ampere flow; MONGE-AMPERE EQUATION; SUBMANIFOLDS; CONVEXITY;
D O I
10.1007/s11401-011-0639-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author establishes the long-time existence and convergence results of the mean curvature flow of entire Lagrangian graphs in the pseudo-Euclidean space, which is related to the logarithmic Monge-AmpSre flow.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 22 条
[1]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[2]  
[Anonymous], 1998, Grundlehren der mathematischen Wissenschaften
[3]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[4]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[5]   INTERIOR W2,P ESTIMATES FOR SOLUTIONS OF THE MONGE-AMPERE EQUATION [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1990, 131 (01) :135-150
[7]  
Chau A, ARXIV09053869
[8]  
CHAU A, ARXIV09023300
[9]   Singularity of mean curvature flow of Lagrangian submanifolds [J].
Chen, JY ;
Li, JY .
INVENTIONES MATHEMATICAE, 2004, 156 (01) :25-51
[10]  
Colding T., ARXIV09083788