Grid-based numerical Hartree-Fock solutions of polyatomic molecules
被引:30
作者:
Shiozaki, Toru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
Univ Tokyo, Dept Appl Chem, Tokyo 1138656, JapanUniv Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
Shiozaki, Toru
[1
,2
]
Hirata, So
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USAUniv Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
Hirata, So
[1
]
机构:
[1] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
[2] Univ Tokyo, Dept Appl Chem, Tokyo 1138656, Japan
来源:
PHYSICAL REVIEW A
|
2007年
/
76卷
/
04期
关键词:
D O I:
10.1103/PhysRevA.76.040503
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
Numerical solutions of the Hartree-Fock (HF) equation of polyatomic molecules have been obtained by an extension of the numerical density-functional method of Becke and Dickson [J. Chem. Phys. 89, 2993 (1988); 92, 3610 (1990)]. A finite-difference method has been used to solve Poisson's equation for the Coulomb and exchange potentials and to evaluate the action of the Laplace operator on numerical orbitals expanded on an interlocking multicenter quadrature grid. Basis-set-limit HF results for an atom and diatomic and triatomic molecules are presented with the total energies and the highest occupied orbital energies converged to within 10(-5) Hartree without any extrapolation.