Characterization of syngas laminar flames using the Bunsen burner configuration

被引:106
作者
Bouvet, N. [1 ]
Chauveau, C. [1 ]
Goekalp, I. [1 ]
Lee, S. -Y. [2 ]
Santoro, R. J. [3 ,4 ]
机构
[1] CNRS, ICARE, F-45071 Orleans 2, France
[2] Michigan Technol Univ, Houghton, MI 49931 USA
[3] Penn State Univ, Propuls Engn Res Ctr, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Syngas Bunsen flames; Flame speed; Flame stability; OH* Chemiluminescence; Schlieren; BURNING VELOCITIES; CARBON MONOXIDE; AIR FLAMES; MIXTURES; COMBUSTION; PRESSURE; HYDROGEN; FUEL; SPEEDS; TEMPERATURE;
D O I
10.1016/j.ijhydene.2010.08.147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laminar flame speeds of syngas mixtures (H-2/CO/Air) have been studied using the Bunsen flame configuration with both straight and nozzle burners. The flame surface area and flame cone angle methodologies, respectively based on the OH* chemiluminescence and Schlieren imaging techniques, have been performed to extract flame speeds for a wide range of equivalence ratios (0.3 < phi < 1.2) and mixture compositions (1% < %H-2 <100%). As a result, a flame speed correlation established for lean syngas flames with 0.6 < phi < 1.0 and 10% < %H-2 <70% is proposed. A particular attention has been devoted to the development and validation of the OH* chemiluminescence methodology with the identification of important parameters governing the measurement accuracy. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:992 / 1005
页数:14
相关论文
共 50 条
[41]   A direct numerical simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-Part 1: Scalar gradient and strain rate statistics [J].
Klein, M. ;
Alwazzan, D. ;
Chakraborty, N. .
COMPUTERS & FLUIDS, 2018, 173 :178-188
[42]   A Direct Numerical Simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-part 2: Surface Density Function transport statistics [J].
Klein, M. ;
Alwazzan, D. ;
Chakraborty, N. .
COMPUTERS & FLUIDS, 2018, 173 :147-156
[43]   Characterizing the influence of thermodiffusive effects on turbulent burning velocity of lean hydrogen/air mixtures using critically stretched laminar flames [J].
Wang, Yiqing ;
Lipatnikov, Andrei N. ;
Chen, Zheng .
COMBUSTION AND FLAME, 2025, 279
[44]   Combustion Characteristics of Natural Gas/Air Flat Premixed Laminar Flames in a Developed Matrix Burner [J].
Shehata, M. ;
Gad, H. M. ;
Ibrahim, I. A. .
SCIENTIFIC AFRICAN, 2023, 20
[45]   SIMULATION OF NON-AUTOIGNITED AND AUTOIGNITED LAMINAR NON-PREMIXED JET FLAMES OF SYNGAS IN HEATED COFLOW AIR [J].
Choi, Sang Kyu ;
Al-Noman, Saeed M. ;
Chung, Suk Ho .
COMBUSTION SCIENCE AND TECHNOLOGY, 2014, 187 (1-2) :132-147
[46]   Measurement of the laminar burning velocities and markstein lengths of lean and stoichiometric syngas premixed flames under various hydrogen fractions [J].
Li, Hong-Meng ;
Li, Guo-Xiu ;
Sun, Zuo-Yu ;
Zhai, Yue ;
Zhou, Zi-Hang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) :17371-17380
[47]   A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations [J].
Jayachandran, Jagannath ;
Lefebvre, Alexandre ;
Zhao, Runhua ;
Halter, Fabien ;
Varea, Emilien ;
Renou, Bruno ;
Egolfopoulos, Fokion N. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 :695-702
[48]   An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation [J].
Ma, Liuhao ;
Cheong, Kin-Pang ;
Ning, Hongbo ;
Ren, Wei .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2020, 112
[49]   Effect of burner diameter and diluents on the extinction strain rate of syngas-air non-premixed Tsuji-type flames [J].
Ali, S. M. ;
Varunkumar, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) :9113-9127
[50]   Flame emission spectroscopy measurement and comprehensive characterization of various spray flames in a turbulent swirl burner [J].
Zhang, Wei ;
Xu, Chuanlong ;
Liu, Weijie ;
Zhou, Yi ;
Su, He ;
Xue, Ranran .
FUEL, 2025, 383