Bending buckling of single-walled carbon nanotubes by atomic-scale finite element

被引:40
作者
Guo, X.
Leung, A. Y. T. [1 ]
He, X. Q.
Jiang, H.
Huang, Y.
机构
[1] City Univ Hong Kong, Dept Bldg & Construct, Hong Kong, Hong Kong, Peoples R China
[2] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
关键词
nano-structures; buckling; computational modelling; morphology change;
D O I
10.1016/j.compositesb.2007.02.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper employs the atomic-scale finite element method to study bending buckling of single-walled carbon nanotubes (SWNTs). As the bending angle increases, kinks will appear and the morphology of the SWNT will change abruptly. The (15,0) SWNT changes into a one-kinked structure, and finally contains two kinks; while the (10, 0) SWNT changes into a one-kinked structure, then into a two-kinked one, and finally contains three kinks. Strain energy grows initially as a quadratic function of bending angle, then increases gradually slowly, and finally changes approximately linearly. The energy releases suddenly at morphology bifurcations and the amount depends on degree of morphology change. The simulation shows that the appearance of kinks associated with the large deformation nearby reduces the slope of the strain energy curve in the post-buckling stages and hence increases the flexibility of the SWNTs. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:202 / 208
页数:7
相关论文
共 23 条
[1]  
*ABAQUS, 2002, ABAQUS THEOR MAN US
[2]   Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes [J].
Arroyo, M ;
Belytschko, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (03) :419-456
[3]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Super-compressible foamlike carbon nanotube films [J].
Cao, AY ;
Dickrell, PL ;
Sawyer, WG ;
Ghasemi-Nejhad, MN ;
Ajayan, PM .
SCIENCE, 2005, 310 (5752) :1307-1310
[6]   Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J].
Demczyk, BG ;
Wang, YM ;
Cumings, J ;
Hetman, M ;
Han, W ;
Zettl, A ;
Ritchie, RO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2) :173-178
[7]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584
[8]   Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy [J].
Hadjiev, VG ;
Lagoudas, DC ;
Oh, ES ;
Thakre, P ;
Davis, D ;
Files, BS ;
Yowell, L ;
Arepalli, S ;
Bahr, JL ;
Tour, JM .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (01) :128-136
[9]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[10]   Structural flexibility of carbon nanotubes [J].
Iijima, S ;
Brabec, C ;
Maiti, A ;
Bernholc, J .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (05) :2089-2092