Solution of biharmonic equations with application to radar Imaging

被引:54
作者
Andersson, LE
Elfving, T
Golub, GH
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
关键词
Poisson and biharmonic equation; boundary conditions; iterative methods;
D O I
10.1016/S0377-0427(98)00079-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a radar imaging problem using broad-band, low-frequency waves, we encounter the problem of solving Poisson's equation over a very large rectangular grid, typically five thousand times thousand pixels. In addition, no information about boundary values is available. In order to select suitable solutions we solve the Poisson equation under the side condition that some criterion function, usually a Sobolev norm, should be minimized. Under appropriate smoothness assumptions this problem may be reformulated as a boundary value problem for the biharmonic equation. Numerical techniques ate investigated for this problem. We also include the results of some numerical experiments. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:153 / 180
页数:28
相关论文
共 24 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   ON THE DETERMINATION OF A FUNCTION FROM SPHERICAL AVERAGES [J].
ANDERSSON, LE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :214-232
[3]  
ANDERSSON LE, 1992, 3068333 FOA
[4]  
ANDERSSON LE, 1992, 3068233 FOA
[5]  
Bjorck A., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P145, DOI 10.1007/BF01930845
[6]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[7]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[8]  
CONCUS P, 1975, P S SPARS MATR COMP
[9]  
CONCUS P, 1976, STANCS76535 STANF U
[10]   A NOTE ON THE GENERALIZED CONJUGATE-GRADIENT METHOD [J].
EISENSTAT, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :358-361