Conductive Domain-Wall Temperature Sensors of LiNbO3 Ferroelectric Single-Crystal Thin Films

被引:17
作者
Geng, Wenping [1 ]
He, Jinlong [1 ]
Qiao, Xiaojun [1 ]
Niu, Liya [1 ]
Zhao, Caiqin [1 ]
Xue, Gang [1 ]
Bi, Kaixi [1 ]
Mei, Linyu [2 ]
Wang, Xiangjian [3 ,4 ]
Chou, Xiujian [1 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Mech Engn, Taiyuan 030051, Peoples R China
[3] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[4] Lulea Univ Technol, Appl Phys, S-97187 Lulea, Sweden
基金
中国国家自然科学基金;
关键词
Domain wall current; LiNbO3; ferroelectric; single crystal thin film;
D O I
10.1109/LED.2021.3118384
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Domain wall current (DWC) plays a key role in storage devices, logic devices and sensors due to its high on-off ratio and nano structure size in the era of nanoelectronics technology. In this work, the DWC of single crystal LiNbO3 thin film was studied by piezoresponse force microscope(PFM) and conducting atomic forcemicroscope (c-AFM). We mainly focus on voltage and temperature dependence of DWC which increases with the voltage and temperatures. Based on this research, the packaged DWC temperature sensor is fabricated and applied in wide temperature range. The existence of domain walls makes the current on-off ratio as high as 103 at the voltage of 15 V. Our study shows that DWC has a negative temperature coefficient (NTC) from 140 K to 500 K. The current increases from 3 pA to 57 mu A, which is attributed to the conductivity of switched domain. This work proposes a new type temperature sensor with wide temperature range and high compatibility and sensitivity. In addition, it provides support for harsh environment applications of ferroelectric domain engineering devices.
引用
收藏
页码:1841 / 1844
页数:4
相关论文
共 34 条
[1]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[2]   Nonvolatile ferroelectric field-effect transistors [J].
Chai, Xiaojie ;
Jiang, Jun ;
Zhang, Qinghua ;
Hou, Xu ;
Meng, Fanqi ;
Wang, Jie ;
Gu, Lin ;
Zhang, David Wei ;
Jiang, An Quan .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Amorphous piezo- and pyroelectric phases of BaZrO3 and SrTiO3 [J].
Ehre, David ;
Lyahovitskaya, Vera ;
Tagantsev, Alexander ;
Lubomirsky, Igor .
ADVANCED MATERIALS, 2007, 19 (11) :1515-+
[4]   Electrical conduction at domain walls in lead titanate (PbTiO3) single crystals [J].
Faraji, N. ;
Yan, Z. ;
Seidel, J. .
APPLIED PHYSICS LETTERS, 2017, 110 (21)
[5]   A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls [J].
Foeth, M ;
Sfera, A ;
Stadelmann, P ;
Buffat, PA .
JOURNAL OF ELECTRON MICROSCOPY, 1999, 48 (06) :717-723
[6]   Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films [J].
Guyonnet, Jill ;
Gaponenko, Iaroslav ;
Gariglio, Stefano ;
Paruch, Patrycja .
ADVANCED MATERIALS, 2011, 23 (45) :5377-+
[7]   Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3 [J].
Inbar, I ;
Cohen, RE .
PHYSICAL REVIEW B, 1996, 53 (03) :1193-1204
[8]   Switching spectroscopy piezoresponse force microscopy of ferroelectric materials [J].
Jesse, S ;
Baddorf, AP ;
Kalinin, SV .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[9]   Ferroelectric domain wall memory with embedded selector realized in LiNbO3single crystals integrated on Si wafers [J].
Jiang, An Quan ;
Geng, Wen Ping ;
Lv, Peng ;
Hong, Jia-wang ;
Jiang, Jun ;
Wang, Chao ;
Chai, Xiao Jie ;
Lian, Jian Wei ;
Zhang, Yan ;
Huang, Rong ;
Zhang, David Wei ;
Scott, James F. ;
Hwang, Cheol Seong .
NATURE MATERIALS, 2020, 19 (11) :1188-+
[10]   Real-Time 3D Imaging of Nanoscale Ferroelectric Domain Wall Dynamics in Lithium Niobate Single Crystals under Electric Stimuli: Implications for Domain-Wall-Based Nanoelectronic Devices [J].
Kirbus, Benjamin ;
Godau, Christian ;
Wehmeier, Lukas ;
Beccard, Henrik ;
Beyreuther, Elke ;
Haussmann, Alexander ;
Eng, Lukas M. .
ACS APPLIED NANO MATERIALS, 2019, 2 (09) :5787-5794