Base and Prime Editing Technologies for Blood Disorders

被引:52
作者
Antoniou, Panagiotis [1 ]
Miccio, Annarita [1 ]
Brusson, Megane [1 ]
机构
[1] Univ Paris, Imagine Inst, Lab Chromatin & Gene Regulat Dev, INSERM,UMR 1163, Paris, France
来源
FRONTIERS IN GENOME EDITING | 2021年 / 3卷
基金
欧洲研究理事会;
关键词
genome editing; base editing; CRISPR; Cas9; genetic disorders; blood diseases; GENE-THERAPY; GENOMIC DNA; OFF-TARGET; RNA; DISEASE; CRISPR/CAS9;
D O I
10.3389/fgeed.2021.618406
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nuclease-based genome editing strategies hold great promise for the treatment of blood disorders. However, a major drawback of these approaches is the generation of potentially harmful double strand breaks (DSBs). Base editing is a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations in the DNA without generating DSBs. Two major classes of base editors have been developed: cytidine base editors or CBEs allowing C>T conversions and adenine base editors or ABEs allowing A>G conversions. The scope of base editing tools has been extensively broadened, allowing higher efficiency, specificity, accessibility to previously inaccessible genetic loci and multiplexing, while maintaining a low rate of Insertions and Deletions (InDels). Base editing is a promising therapeutic strategy for genetic diseases caused by point mutations, such as many blood disorders and might be more effective than approaches based on homology-directed repair, which is moderately efficient in hematopoietic stem cells, the target cell population of many gene therapy approaches. In this review, we describe the development and evolution of the base editing system and its potential to correct blood disorders. We also discuss challenges of base editing approaches-including the delivery of base editors and the off-target events-and the advantages and disadvantages of base editing compared to classical genome editing strategies. Finally, we summarize the recent technologies that have further expanded the potential to correct genetic mutations, such as the novel base editing system allowing base transversions and the more versatile prime editing strategy.
引用
收藏
页数:17
相关论文
共 107 条
[1]   Primary immunodeficiency and autoimmunity: A comprehensive review [J].
Amaya-Uribe, Laura ;
Rojas, Manuel ;
Azizi, Gholamreza ;
Anaya, Juan-Manuel ;
Gershwin, M. Eric .
JOURNAL OF AUTOIMMUNITY, 2019, 99 :52-72
[2]   Gene correction of HBB mutations in CD34+ hematopoietic stem cells using Cas9 mRNA and ssODN donors [J].
Justin S. Antony ;
Ngadhnjim Latifi ;
A. K. M. Ashiqul Haque ;
Andrés Lamsfus-Calle ;
Alberto Daniel-Moreno ;
Sebastian Graeter ;
Praveen Baskaran ;
Petra Weinmann ;
Markus Mezger ;
Rupert Handgretinger ;
Michael S. D. Kormann .
Molecular and Cellular Pediatrics, 5 (1)
[3]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[4]   Gene Editing and Genotoxicity: Targeting the Off-Targets [J].
Blattner, Georges ;
Cavazza, Alessia ;
Thrasher, Adrian J. ;
Turchiano, Giandomenico .
FRONTIERS IN GENOME EDITING, 2020, 2
[5]   A paradigm shift on beta-thalassaemia treatment: How will we manage this old disease with new therapies? [J].
Cappellini, Maria Domenica ;
Porter, John B. ;
Viprakasit, Vip ;
Taher, Ali T. .
BLOOD REVIEWS, 2018, 32 (04) :300-311
[6]   Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives [J].
Castagnoli, Riccardo ;
Delmonte, Ottavia Maria ;
Calzoni, Enrica ;
Notarangelo, Luigi Daniele .
FRONTIERS IN PEDIATRICS, 2019, 7
[7]   Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges [J].
Cavazzana, Marina ;
Bushman, Frederic D. ;
Miccio, Annarita ;
Andre-Schmutz, Isabelle ;
Six, Emmanuelle .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (06) :447-462
[8]   Gene Therapy for β-Hemoglobinopathies [J].
Cavazzana, Marina ;
Antoniani, Chiara ;
Miccio, Annarita .
MOLECULAR THERAPY, 2017, 25 (05) :1142-1154
[9]   Minimal PAM specificity of a highly similar SpCas9 ortholog [J].
Chatterjee, Pranam ;
Jakimo, Noah ;
Jacobson, Joseph M. .
SCIENCE ADVANCES, 2018, 4 (10)
[10]   Development of Highly Efficient Dual-AAV Split Adenosine Base Editor for In Vivo Gene Therapy [J].
Chen, Yuxi ;
Zhi, Shengyao ;
Liu, Weiliang ;
Wen, Jinkun ;
Hu, Sihui ;
Cao, Tianqi ;
Sun, Hongwei ;
Li, Yang ;
Huang, Li ;
Liu, Yizhi ;
Liang, Puping ;
Huang, Junjiu .
SMALL METHODS, 2020, 4 (09)