Copolymer Informatics with Multitask Deep Neural Networks

被引:55
作者
Kuenneth, Christopher [1 ]
Schertzer, William [1 ]
Ramprasad, Rampi [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
POLYMER INFORMATICS; DESIGN;
D O I
10.1021/acs.macromol.1c00728
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymer informatics tools have been recently gaining ground to efficiently and effectively develop, design, and discover new polymers that meet specific application needs. So far, however, these data-driven efforts have largely focused on homopolymers. Here, we address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers. Advanced polymer fingerprinting and deep-learning schemes that incorporate multitask learning and meta learning are proposed. A large data set containing over 18 000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used to demonstrate the copolymer prediction efficacy. The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
引用
收藏
页码:5957 / 5961
页数:5
相关论文
共 33 条
  • [1] Engineering polymer informatics: Towards the computer-aided design of polymers
    Adams, Nico
    Murray-Rust, Peter
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2008, 29 (08) : 615 - 632
  • [2] Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining
    Afzal, Mohammad Atif Faiz
    Haghighatlari, Mojtaba
    Ganesh, Sai Prasad
    Cheng, Chong
    Hachmann, Johannes
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (23) : 14610 - 14618
  • [3] Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV)
    Arcos-Hernandez, Monica V.
    Laycock, Bronwyn
    Donose, Bogdan C.
    Pratt, Steven
    Halley, Peter
    Al-Luaibi, Salah
    Werker, Alan
    Lant, Paul A.
    [J]. EUROPEAN POLYMER JOURNAL, 2013, 49 (04) : 904 - 913
  • [4] Polymer Informatics: Opportunities and Challenges
    Audus, Debra J.
    de Pablo, Juan J.
    [J]. ACS MACRO LETTERS, 2017, 6 (10) : 1078 - 1082
  • [5] Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders
    Batra, Rohit
    Dai, Hanjun
    Tran Doan Huan
    Chen, Lihua
    Kim, Chiho
    Gutekunst, Will R.
    Song, Le
    Ramprasad, Rampi
    [J]. CHEMISTRY OF MATERIALS, 2020, 32 (24) : 10489 - 10500
  • [6] Emerging materials intelligence ecosystems propelled by machine learning
    Batra, Rohit
    Song, Le
    Ramprasad, Rampi
    [J]. NATURE REVIEWS MATERIALS, 2021, 6 (08) : 655 - 678
  • [7] Polymer informatics: Current status and critical next steps
    Chen, Lihua
    Pilania, Ghanshyam
    Batra, Rohit
    Huan, Tran Doan
    Kim, Chiho
    Kuenneth, Christopher
    Ramprasad, Rampi
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 144
  • [8] Frequency-dependent dielectric constant prediction of polymers using machine learning
    Chen, Lihua
    Kim, Chiho
    Batra, Rohit
    Lightstone, Jordan P.
    Wu, Chao
    Li, Zongze
    Deshmukh, Ajinkya A.
    Wang, Yifei
    Tran, Huan D.
    Vashishta, Priya
    Sotzing, Gregory A.
    Cao, Yang
    Ramprasad, Rampi
    [J]. NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [9] Gal Y., 2015, ICML, V48
  • [10] Hadjichristidis Nikos., 2002, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, P383