Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids

被引:198
作者
Sarkara, Suranjan [1 ]
Selvam, R. Panneer [1 ]
机构
[1] Univ Arkansas, Computat Mech & Nanotechnol Modeling Lab, Fayetteville, AR 72701 USA
关键词
D O I
10.1063/1.2785009
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanofluids have been proposed as a route for surpassing the performance of currently available heat transfer liquids in the near future. In this study an equilibrium molecular dynamics simulation was used to model a nanofluid system. The thermal conductivity of the base fluid and nanofluid was computed using the Green-Kubo method for various volume fractions of nanoparticle loadings. This study showed the ability of molecular dynamics to predict the enhanced thermal conductivity of nanofluids. Through molecular dynamics calculation of mean square displacements for liquid phase in base fluid and for liquid and solid phases in nanofluid, this study tried to investigate the mechanisms involved in thermal transport of nanofluids at the atomic level. The result showed that the thermal transport enhancement of nanofluids was mostly due to the increased movement of liquid atoms in the presence of nanoparticle. Diffusion coefficients were also calculated for base fluid and nanofluids. Similarity of enhancement in thermal conductivity and diffusion coefficient for nanofluids indicates similar transport process for mass and heat. (C) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
Allen MP, 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
[2]   Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids [J].
Bhattacharya, P ;
Saha, SK ;
Yadav, A ;
Phelan, PE ;
Prasher, RS .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6492-6494
[3]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[4]   Temperature dependence of thermal conductivity enhancement for nanofluids [J].
Das, SK ;
Putra, N ;
Thiesen, P ;
Roetzel, W .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (04) :567-574
[5]  
EAPEN J, 2006, P 18 NAT 7 ISHMT ASM
[6]   Mechanism of thermal transport in dilute nanocolloids [J].
Eapen, Jacob ;
Li, Ju ;
Yip, Sidney .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)
[7]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[8]   Role of Brownian motion hydrodynamics on nanofluid thermal conductivity [J].
Evans, W ;
Fish, J ;
Keblinski, P .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[9]  
GOLDSTEIN RJ, 1985, MASS TRANSFER SYSTEM
[10]  
Haile JM, 1992, MOL DYNAMICS SIMULAT