The electron transfer pathway upon H2 oxidation by the NiFe bidirectional hydrogenase of Synechocystis sp PCC 6803 in the light shares components with the photosynthetic electron transfer chain in thylakoid membranes

被引:11
作者
Dutta, Ipsita [1 ]
Vermaas, Wim F. J. [1 ]
机构
[1] Arizona State Univ, Sch Life Sci, 427 E Tyler Mall,Box 874501, Tempe, AZ 85287 USA
关键词
Bidirectional hydrogenase; Synechocystis; Cyanobacteria; Hydrogen uptake; Electron transport; Photosynthesis; INORGANIC CARBON TRANSPORT; SP STRAIN PCC-6803; FLAVODIIRON PROTEINS; HOX-HYDROGENASE; PHOTOSYSTEM-II; GAS-EXCHANGE; COMPLEX; DEHYDROGENASE; GENE; EVOLUTION;
D O I
10.1016/j.ijhydene.2016.01.172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In anaerobic conditions the NiFe hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 catalyzes transient H-2 production upon a darkness-to-light transition, followed by a rapid H-2 uptake. We measured H-2 uptake in Synechocystis mutants lacking photosystem I, photosystem II or terminal oxidases and in the wild-type strain with and without active cytochrome b(6)f Rapid light-induced H-2 uptake was dependent on cytochrome b(6)f and the presence of photosystem I. We propose light-dependent electron transport from H-2 to plastoquinone, probably via NAD(P)H dehydrogenase, and on to cytochrome b(6)f and photosystem I. In darkness H-2 uptake is similar to 10-fold slower than in the light and is independent of thylakoid redox components. The plastoquinone redox state may be key in determining the ultimate H-2 redox partner. H-2 uptake and production in darkness likely use the same redox partners. NADH and NADPH, but not reduced ferredoxin, were confirmed as hydrogenase redox donors in vitro. (C) 2016 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:11949 / 11959
页数:11
相关论文
共 57 条
[31]   Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp PCC 6803 [J].
Knoop, Henning ;
Gruendel, Marianne ;
Zilliges, Yvonne ;
Lehmann, Robert ;
Hoffmann, Sabrina ;
Lockau, Wolfgang ;
Steuer, Ralf .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (06)
[32]   Powerful fermentative hydrogen evolution of photosynthate in the cyanobacteriuni Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase [J].
Kothari, Ankita ;
Parameswaran, Prathap ;
Garcia-Pichel, Ferran .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[33]   Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments [J].
Kothari, Ankita ;
Potrafka, Ruth ;
Garcia-Pichel, Ferran .
JOURNAL OF BIOTECHNOLOGY, 2012, 162 (01) :105-114
[34]  
Mayhew SG, EUR J BIOCH
[35]   IDENTIFICATION AND CHARACTERIZATION OF THE ICTA/NDHL GENE-PRODUCT ESSENTIAL TO INORGANIC CARBON TRANSPORT OF SYNECHOCYSTIS PCC6803 [J].
OGAWA, T .
PLANT PHYSIOLOGY, 1992, 99 (04) :1604-1608
[36]   A GENE HOMOLOGOUS TO THE SUBUNIT-2 GENE OF NADH DEHYDROGENASE IS ESSENTIAL TO INORGANIC CARBON TRANSPORT OF SYNECHOCYSTIS PCC6803 [J].
OGAWA, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (10) :4275-4279
[37]   Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS [J].
Palagyi-Meszaros, Livia S. ;
Maroti, Judit ;
Latinovics, Dora ;
Balogh, Timea ;
Klement, Eva ;
Medzihradszky, Katalin F. ;
Rakhely, Gabor ;
Kovacs, Kornel L. .
FEBS JOURNAL, 2009, 276 (01) :164-174
[38]   [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation [J].
Peters, John W. ;
Schut, Gerrit J. ;
Boyd, Eric S. ;
Mulder, David W. ;
Shepard, Eric M. ;
Broderick, Joan B. ;
King, Paul W. ;
Adams, Michael W. W. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2015, 1853 (06) :1350-1369
[39]   The gene encoding the NdhH subunit of type 1 NAD(P)H dehydrogenase is essential to survival of Synechocystis PCC6803 [J].
Pieulle, L ;
Guedeney, G ;
Cassier-Chauvat, C ;
Jeanjean, R ;
Chauvat, F ;
Peltier, G .
FEBS LETTERS, 2000, 487 (02) :272-276
[40]  
Pogulis R J, 1996, Methods Mol Biol, V57, P167