Improving Prediction of Favourable Outcome After 6 Months in Patients with Severe Traumatic Brain Injury Using Physiological Cerebral Parameters in a Multivariable Logistic Regression Model

被引:37
作者
Bennis, Frank C. [1 ,2 ,3 ]
Teeuwen, Bibi [1 ]
Zeiler, Frederick A. [4 ,5 ,6 ,7 ]
Elting, Jan Willem [8 ,9 ]
van der Naalt, Joukje [9 ]
Bonizzi, Pietro [10 ]
Delhaas, Tammo [1 ,3 ]
Aries, Marcel J. [2 ,11 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands
[3] Maastricht Univ, CARIM Sch Cardiovasc Dis, POB 616, NL-6200 MD Maastricht, Netherlands
[4] Univ Manitoba, Dept Surg, Sect Neurosurg, Rady Fac Hlth Sci, Winnipeg, MB, Canada
[5] Univ Manitoba, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Winnipeg, MB, Canada
[6] Univ Manitoba, Fac Engn, Biomed Engn, Winnipeg, MB, Canada
[7] Univ Cambridge, Addenbrookes Hosp, Dept Med, Div Anaesthesia, Cambridge, England
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Neurophysiol, Groningen, Netherlands
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Neurol, Groningen, Netherlands
[10] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
[11] Maastricht Univ, Med Ctr, Dept Intens Care, Maastricht, Netherlands
关键词
Traumatic brain injury; Neuromonitoring; Outcome; Prediction; Logistic regression; PERFUSION-PRESSURE; THRESHOLDS; REACTIVITY; TOOL;
D O I
10.1007/s12028-020-00930-6
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background/Objective Current severe traumatic brain injury (TBI) outcome prediction models calculate the chance of unfavourable outcome after 6 months based on parameters measured at admission. We aimed to improve current models with the addition of continuously measured neuromonitoring data within the first 24 h after intensive care unit neuromonitoring. Methods Forty-five severe TBI patients with intracranial pressure/cerebral perfusion pressure monitoring from two teaching hospitals covering the period May 2012 to January 2019 were analysed. Fourteen high-frequency physiological parameters were selected over multiple time periods after the start of neuromonitoring (0-6 h, 0-12 h, 0-18 h, 0-24 h). Besides systemic physiological parameters and extended Corticosteroid Randomisation after Significant Head Injury (CRASH) score, we added estimates of (dynamic) cerebral volume, cerebral compliance and cerebrovascular pressure reactivity indices to the model. A logistic regression model was trained for each time period on selected parameters to predict outcome after 6 months. The parameters were selected using forward feature selection. Each model was validated by leave-one-out cross-validation. Results A logistic regression model using CRASH as the sole parameter resulted in an area under the curve (AUC) of 0.76. For each time period, an increased AUC was found using up to 5 additional parameters. The highest AUC (0.90) was found for the 0-6 h period using 5 parameters that describe mean arterial blood pressure and physiological cerebral indices. Conclusions Current TBI outcome prediction models can be improved by the addition of neuromonitoring bedside parameters measured continuously within the first 24 h after the start of neuromonitoring. As these factors might be modifiable by treatment during the admission, testing in a larger (multicenter) data set is warranted.
引用
收藏
页码:542 / 551
页数:10
相关论文
共 32 条
  • [1] Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression
    Andrews, PJD
    Sleeman, DH
    Statham, PFX
    McQuatt, A
    Corruble, V
    Jones, PA
    Howells, TP
    Macmillan, CSA
    [J]. JOURNAL OF NEUROSURGERY, 2002, 97 (02) : 326 - 336
  • [2] Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers
    Austin, Peter C.
    Steyerberg, Ewout W.
    [J]. STATISTICS IN MEDICINE, 2014, 33 (03) : 517 - 535
  • [3] Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition
    Carney, Nancy
    Totten, Annette M.
    O'Reilly, Cindy
    Ullman, Jamie S.
    Hawryluk, Gregory W. J.
    Bell, Michael J.
    Bratton, Susan L.
    Chesnut, Randall
    Harris, Odette A.
    Kissoon, Niranjan
    Rubiano, Andres M.
    Shutter, Lori
    Tasker, Robert C.
    Vavilala, Monica S.
    Wilberger, Jack
    Wright, David W.
    Ghajar, Jamshid
    [J]. NEUROSURGERY, 2017, 80 (01) : 6 - 15
  • [4] Continuous assessment of the cerebral vasomotor reactivity in head injury
    Czosnyka, M
    Smielewski, P
    Kirkpatrick, P
    Laing, RJ
    Menon, D
    Pickard, JD
    [J]. NEUROSURGERY, 1997, 41 (01) : 11 - 17
  • [5] Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis
    Donnelly, Joseph
    Czosnyka, Marek
    Adams, Hadie
    Cardim, Danilo
    Kolias, Angelos G.
    Zeiler, Frederick A.
    Lavinio, Andrea
    Aries, Marcel
    Robba, Chiara
    Smielewski, Peter
    Hutchinson, Peter J. A.
    Menon, David K.
    Pickard, John D.
    Budohoski, Karol P.
    [J]. NEUROSURGERY, 2019, 85 (01) : E75 - E82
  • [6] Individualizing Thresholds of Cerebral Perfusion Pressure Using Estimated Limits of Autoregulation
    Donnelly, Joseph
    Czosnyka, Marek
    Adams, Hadie
    Robba, Chiara
    Steiner, Luzius A.
    Cardim, Danilo
    Cabella, Brenno
    Liu, Xiuyun
    Ercole, Ari
    Hutchinson, Peter John
    Menon, David Krishna
    Aries, Marcel J. H.
    Smielewski, Peter
    [J]. CRITICAL CARE MEDICINE, 2017, 45 (09) : 1464 - 1471
  • [7] Development and Validation of an Empiric Tool to Predict Favorable Neurologic Outcomes Among PICU Patients
    Gupta, Punkaj
    Rettiganti, Mallikarjuna
    Gossett, Jeffrey M.
    Daufeldt, Jennifer
    Rice, Tom B.
    Wetzel, Randall C.
    [J]. CRITICAL CARE MEDICINE, 2018, 46 (01) : 108 - 115
  • [8] Guyon Isabelle, 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616
  • [9] Hastie T., 2001, Springer Series in Statistics, DOI [DOI 10.1007/978-0-387-84858-7, 10.1007/978-0-387-21606-5, DOI 10.1007/978-0-387-21606-5, 10.1111/j.1467-985X.2010.00646_6.x, DOI 10.1111/J.1467-985X.2010.00646_6.X]
  • [10] Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care
    Le Roux, Peter
    Menon, David K.
    Citerio, Giuseppe
    Vespa, Paul
    Bader, Mary Kay
    Brophy, Gretchen M.
    Diringer, Michael N.
    Stocchetti, Nino
    Videtta, Walter
    Armonda, Rocco
    Badjatia, Neeraj
    Boeesel, Julian
    Chesnut, Randall
    Chou, Sherry
    Claassen, Jan
    Czosnyka, Marek
    De Georgia, Michael
    Figaji, Anthony
    Fugate, Jennifer
    Helbok, Raimund
    Horowitz, David
    Hutchinson, Peter
    Kumar, Monisha
    McNett, Molly
    Miller, Chad
    Naidech, Andrew
    Oddo, Mauro
    Olson, DaiWai
    O'Phelan, Kristine
    Provencio, J. Javier
    Puppo, Corinna
    Riker, Richard
    Robertson, Claudia
    Schmidt, Michael
    Taccone, Fabio
    [J]. INTENSIVE CARE MEDICINE, 2014, 40 (09) : 1189 - 1209