Improving Prediction of Favourable Outcome After 6 Months in Patients with Severe Traumatic Brain Injury Using Physiological Cerebral Parameters in a Multivariable Logistic Regression Model

被引:40
作者
Bennis, Frank C. [1 ,2 ,3 ]
Teeuwen, Bibi [1 ]
Zeiler, Frederick A. [4 ,5 ,6 ,7 ]
Elting, Jan Willem [8 ,9 ]
van der Naalt, Joukje [9 ]
Bonizzi, Pietro [10 ]
Delhaas, Tammo [1 ,3 ]
Aries, Marcel J. [2 ,11 ]
机构
[1] Maastricht Univ, Dept Biomed Engn, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Maastricht Univ, MHeNS Sch Mental Hlth & Neurosci, POB 616, NL-6200 MD Maastricht, Netherlands
[3] Maastricht Univ, CARIM Sch Cardiovasc Dis, POB 616, NL-6200 MD Maastricht, Netherlands
[4] Univ Manitoba, Dept Surg, Sect Neurosurg, Rady Fac Hlth Sci, Winnipeg, MB, Canada
[5] Univ Manitoba, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Winnipeg, MB, Canada
[6] Univ Manitoba, Fac Engn, Biomed Engn, Winnipeg, MB, Canada
[7] Univ Cambridge, Addenbrookes Hosp, Dept Med, Div Anaesthesia, Cambridge, England
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Clin Neurophysiol, Groningen, Netherlands
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Neurol, Groningen, Netherlands
[10] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
[11] Maastricht Univ, Med Ctr, Dept Intens Care, Maastricht, Netherlands
关键词
Traumatic brain injury; Neuromonitoring; Outcome; Prediction; Logistic regression; PERFUSION-PRESSURE; THRESHOLDS; REACTIVITY; TOOL;
D O I
10.1007/s12028-020-00930-6
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background/Objective Current severe traumatic brain injury (TBI) outcome prediction models calculate the chance of unfavourable outcome after 6 months based on parameters measured at admission. We aimed to improve current models with the addition of continuously measured neuromonitoring data within the first 24 h after intensive care unit neuromonitoring. Methods Forty-five severe TBI patients with intracranial pressure/cerebral perfusion pressure monitoring from two teaching hospitals covering the period May 2012 to January 2019 were analysed. Fourteen high-frequency physiological parameters were selected over multiple time periods after the start of neuromonitoring (0-6 h, 0-12 h, 0-18 h, 0-24 h). Besides systemic physiological parameters and extended Corticosteroid Randomisation after Significant Head Injury (CRASH) score, we added estimates of (dynamic) cerebral volume, cerebral compliance and cerebrovascular pressure reactivity indices to the model. A logistic regression model was trained for each time period on selected parameters to predict outcome after 6 months. The parameters were selected using forward feature selection. Each model was validated by leave-one-out cross-validation. Results A logistic regression model using CRASH as the sole parameter resulted in an area under the curve (AUC) of 0.76. For each time period, an increased AUC was found using up to 5 additional parameters. The highest AUC (0.90) was found for the 0-6 h period using 5 parameters that describe mean arterial blood pressure and physiological cerebral indices. Conclusions Current TBI outcome prediction models can be improved by the addition of neuromonitoring bedside parameters measured continuously within the first 24 h after the start of neuromonitoring. As these factors might be modifiable by treatment during the admission, testing in a larger (multicenter) data set is warranted.
引用
收藏
页码:542 / 551
页数:10
相关论文
共 32 条
[1]   Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression [J].
Andrews, PJD ;
Sleeman, DH ;
Statham, PFX ;
McQuatt, A ;
Corruble, V ;
Jones, PA ;
Howells, TP ;
Macmillan, CSA .
JOURNAL OF NEUROSURGERY, 2002, 97 (02) :326-336
[2]   Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
STATISTICS IN MEDICINE, 2014, 33 (03) :517-535
[3]   Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition [J].
Carney, Nancy ;
Totten, Annette M. ;
O'Reilly, Cindy ;
Ullman, Jamie S. ;
Hawryluk, Gregory W. J. ;
Bell, Michael J. ;
Bratton, Susan L. ;
Chesnut, Randall ;
Harris, Odette A. ;
Kissoon, Niranjan ;
Rubiano, Andres M. ;
Shutter, Lori ;
Tasker, Robert C. ;
Vavilala, Monica S. ;
Wilberger, Jack ;
Wright, David W. ;
Ghajar, Jamshid .
NEUROSURGERY, 2017, 80 (01) :6-15
[4]   Continuous assessment of the cerebral vasomotor reactivity in head injury [J].
Czosnyka, M ;
Smielewski, P ;
Kirkpatrick, P ;
Laing, RJ ;
Menon, D ;
Pickard, JD .
NEUROSURGERY, 1997, 41 (01) :11-17
[5]   Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis [J].
Donnelly, Joseph ;
Czosnyka, Marek ;
Adams, Hadie ;
Cardim, Danilo ;
Kolias, Angelos G. ;
Zeiler, Frederick A. ;
Lavinio, Andrea ;
Aries, Marcel ;
Robba, Chiara ;
Smielewski, Peter ;
Hutchinson, Peter J. A. ;
Menon, David K. ;
Pickard, John D. ;
Budohoski, Karol P. .
NEUROSURGERY, 2019, 85 (01) :E75-E82
[6]   Individualizing Thresholds of Cerebral Perfusion Pressure Using Estimated Limits of Autoregulation [J].
Donnelly, Joseph ;
Czosnyka, Marek ;
Adams, Hadie ;
Robba, Chiara ;
Steiner, Luzius A. ;
Cardim, Danilo ;
Cabella, Brenno ;
Liu, Xiuyun ;
Ercole, Ari ;
Hutchinson, Peter John ;
Menon, David Krishna ;
Aries, Marcel J. H. ;
Smielewski, Peter .
CRITICAL CARE MEDICINE, 2017, 45 (09) :1464-1471
[7]   Development and Validation of an Empiric Tool to Predict Favorable Neurologic Outcomes Among PICU Patients [J].
Gupta, Punkaj ;
Rettiganti, Mallikarjuna ;
Gossett, Jeffrey M. ;
Daufeldt, Jennifer ;
Rice, Tom B. ;
Wetzel, Randall C. .
CRITICAL CARE MEDICINE, 2018, 46 (01) :108-115
[8]  
Guyon I., 2003, J. Mach. Learn. Res, V3, P1157
[9]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V2nd ed., DOI DOI 10.1007/B94608
[10]  
Le Roux P, 2014, INTENS CARE MED, V40, P1189, DOI [10.1007/s00134-014-3369-6, 10.1007/s12028-014-0041-5]