High quality-factor optical nanocavities in bulk single-crystal diamond

被引:214
作者
Burek, Michael J. [1 ]
Chu, Yiwen [2 ]
Liddy, Madelaine S. Z. [1 ,3 ]
Patel, Parth [1 ,3 ]
Rochman, Jake [1 ,3 ]
Meesala, Srujan [1 ]
Hong, Wooyoung [4 ]
Quan, Qimin [5 ]
Lukin, Mikhail D. [2 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[4] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[5] Harvard Univ, Rowland Inst Harvard, Cambridge, MA 02142 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
COLOR-CENTER; FABRICATION; CAVITY; NANOSTRUCTURES; NETWORKS; CIRCUITS;
D O I
10.1038/ncomms6718
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-crystal diamond, with its unique optical, mechanical and thermal properties, has emerged as a promising material with applications in classical and quantum optics. However, the lack of heteroepitaxial growth and scalable fabrication techniques remains the major limiting factors preventing more wide-spread development and application of diamond photonics. In this work, we overcome this difficulty by adapting angled-etching techniques, previously developed for realization of diamond nanomechanical resonators, to fabricate racetrack resonators and photonic crystal cavities in bulk single-crystal diamond. Our devices feature large optical quality factors, in excess of 10(5), and operate over a wide wavelength range, spanning visible and telecom. These newly developed high-Q diamond optical nanocavities open the door for a wealth of applications, ranging from nonlinear optics and chemical sensing, to quantum information processing and cavity optomechanics.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
Aharonovich I, 2011, NAT PHOTONICS, V5, P397, DOI [10.1038/NPHOTON.2011.54, 10.1038/nphoton.2011.54]
[2]   Ultralow-dissipation optomechanical resonators on a chip [J].
Anetsberger, G. ;
Riviere, R. ;
Schliesser, A. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2008, 2 (10) :627-633
[3]   Superconducting nanowire single photon detector on diamond [J].
Atikian, Haig A. ;
Eftekharian, Amin ;
Salim, A. Jafari ;
Burek, Michael J. ;
Choy, Jennifer T. ;
Majedi, A. Hamed ;
Loncar, Marko .
APPLIED PHYSICS LETTERS, 2014, 104 (12)
[4]   Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices [J].
Auciello, Orlando ;
Sumant, Anirudha V. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (7-9) :699-718
[5]   Triangular nanobeam photonic cavities in single-crystal diamond [J].
Bayn, Igal ;
Meyler, Boris ;
Salzman, Joseph ;
Kalish, Rafi .
NEW JOURNAL OF PHYSICS, 2011, 13
[6]   Basic structures for photonic integrated circuits in silicon-on-insulator [J].
Bogaerts, W ;
Taillaert, D ;
Luyssaert, B ;
Dumon, P ;
Van Campenhout, J ;
Bienstman, P ;
Van Thourhout, D ;
Baets, R ;
Wiaux, V ;
Beckx, S .
OPTICS EXPRESS, 2004, 12 (08) :1583-1591
[7]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[8]   Nanomechanical resonant structures in single-crystal diamond [J].
Burek, Michael J. ;
Ramos, Daniel ;
Patel, Parth ;
Frank, Ian W. ;
Loncar, Marko .
APPLIED PHYSICS LETTERS, 2013, 103 (13)
[9]   Free-Standing Mechanical and Photonic Nanostructures in Single-Crystal Diamond [J].
Burek, Michael J. ;
de Leon, Nathalie P. ;
Shields, Brendan J. ;
Hausmann, Birgit J. M. ;
Chu, Yiwen ;
Quan, Qimin ;
Zibrov, Alexander S. ;
Park, Hongkun ;
Lukin, Mikhail D. ;
Loncar, Marko .
NANO LETTERS, 2012, 12 (12) :6084-6089
[10]   Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system [J].
Cai, M ;
Painter, O ;
Vahala, KJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (01) :74-77