An h-Adaptive Local Discontinuous Galerkin Method for Simulating Wormhole Propagation with Darcy-Forcheiner Model

被引:0
作者
Tian, Lulu [1 ]
Guo, Hui [1 ]
Jia, Rui [1 ]
Yang, Yang [2 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
[2] Michigan Technol Univ, Houghton, MI 49931 USA
基金
中国国家自然科学基金;
关键词
Local discontinuous Galerkin method; Error estimate; Compressible wormhole propagation; Adaptive mesh; FINITE-ELEMENT-METHOD; COMPRESSIBLE MISCIBLE DISPLACEMENTS; POSTERIORI ERROR ESTIMATION; CONSERVATION-LAWS; DIFFERENCE METHOD; DIFFUSION; CONVECTION; SUPERCONVERGENCE; APPROXIMATIONS; DISSOLUTION;
D O I
10.1007/s10915-020-01135-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply local discontinuous Galerkin methods to the compressible wormhole propagation. With high velocity, Darcy-Forchheimer model is used instead of classical Darcy framework. Optimal error estimates for the pressure, velocity, porosity and concentration in different norms are established on non-uniform rectanglular grids. To capture the propagation of the wormhole accurately and save computations, adaptive mesh is applied. Numerical experiments are presented to verify the theoretical analysis and show the good performance of the LDG scheme for compressible wormhole propagation.
引用
收藏
页数:26
相关论文
共 61 条