An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications

被引:208
作者
Adimurthi [2 ]
Yang, Yunyan [1 ]
机构
[1] Renmin Univ China, Dept Math, Informat Sch, Beijing 100872, Peoples R China
[2] TIFR Ctr, Bangalore 560012, Karnataka, India
基金
美国国家科学基金会;
关键词
NONTRIVIAL SOLUTION; ELLIPTIC EQUATION; UNBOUNDED-DOMAINS; CRITICAL GROWTH; SHARP; EXISTENCE; CONSTANTS; SPACES;
D O I
10.1093/imrn/rnp194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an interpolation of Hardy inequality and Trudinger-Moser inequality in R-N (N >= 2). Denote parallel to u parallel to(1,tau) = (integral(RN) (vertical bar del u vertical bar(N) + tau vertical bar u vertical bar(N))dx)(1/N) for any tau > 0. There holds sup(parallel to u parallel to 1,tau <= 1) integral(RN) 1/vertical bar x vertical bar(beta) {e(alpha vertical bar u vertical bar N/(N-1)) - Sigma(N-2)(m=0) alpha(m)vertical bar u vertical bar(mN/(N-1))/m!} dx < infinity if and only if alpha/alpha(N) + beta/N <= 1, where 0 <= beta < N, alpha(N) = N omega(1/(N-1))(N-1), omega(N-1) is the volume of the unit sphere SN-1. The above interpolation can be used to establish sufficient conditions under which the quasilinear nonhomogeneous partial differential equation -Delta(N)u + V(x)vertical bar u vertical bar(N-2)u = f(x,u)/vertical bar x vertical bar(beta) + epsilon h(x) in R-N has weak solutions, where -Delta(N)u = -div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian, V is a continuous potential, f behaves like e(alpha vertical bar u vertical bar N/(N-1)) when vertical bar u vertical bar -> infinity, h is an element of (W-1,W-N(R-N))*, 0 < beta < N, and epsilon > 0.
引用
收藏
页码:2394 / 2426
页数:33
相关论文
共 31 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]  
ADIMURTHI, 1990, COMMUN PART DIFF EQ, V15, P461
[3]   A singular Moser-Trudinger embedding and its applications [J].
Adimurthi ;
Sandeep, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6) :585-603
[4]   An improved Hardy-Sobolev inequality and its application [J].
Adimurthi ;
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :489-505
[5]  
[Anonymous], 1997, Abstr. Appl. Anal.
[6]  
[Anonymous], 1990, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V17, P393
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]   A general rearrangement inequality a la Hardy-Littlewood [J].
Brock, F .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (04) :309-320
[10]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259