Long-time behaviour of a stochastic prey-predator model

被引:181
作者
Rudnicki, R
机构
[1] Polish Acad Sci, Math Inst, PL-40007 Katowice, Poland
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
关键词
prey-predator model; diffusion process; Markov semigroups; asymptotic stability;
D O I
10.1016/S0304-4149(03)00090-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a system of stochastic equations which models the population dynamics of a prey-predator type. We show that the distributions of the solutions of this system are absolutely continuous. We analyse long-time behaviour of densities of the distributions of the solutions. We prove that the densities can converge in L-1 to an invariant density or can converge weakly to a singular measure. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 17 条
[1]  
Aida S., 1993, ASYMPTOTIC PROBLEMS, V284, P3
[2]  
[Anonymous], P INT S STOCH DIFF E
[3]  
[Anonymous], STOCHASTIC ANAL
[4]  
ARNOLD L, 1979, Biometrical Journal, V21, P451, DOI 10.1002/bimj.4710210507
[5]  
BENAROUS G, 1991, PROBAB THEORY REL, V90, P377
[6]  
Chessa S, 2002, B UNIONE MAT ITAL, V5B, P789
[7]   HARRIS OPERATORS [J].
FOGUEL, SR .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (3-4) :281-309
[8]  
Khasminskii RZ, 2001, ANN APPL PROBAB, V11, P952
[9]  
KOMORNICKI S, 1989, B POL ACAD SCI-CHEM, V37, P221
[10]  
Lasota A., 1994, SPRINGER APPL MATH S, V97