Generalized Kaloujnine groups, uniseriality and height of automorphisms

被引:7
作者
Ceccherini-Silberstein, TG
Leonov, YG
Scarabotti, F
Tolli, F
机构
[1] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy
[2] Odessa Natl Acad Telecommun, Dept Comp Sci, UA-65000 Odessa, Ukraine
[3] Univ Roma La Sapienza, Dept MeMoMat, I-00161 Rome, Italy
[4] Univ Roma 3, Dipartimento Matemat, I-00146 Rome, Italy
关键词
groups acting on trees; Lie action; uniseriality; Radon transform; characteristic subgroups;
D O I
10.1142/S0218196705002372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Lie action of the Kaloujnine group K(p, n) on the vector space (Fp)(pn) is uniserial. Using some Radon transform techniques we derive a formula for the height of the elements in K(p, n). A generalization of the Kaloujnine groups is introduced by considering automorphisms of a spherically homogeneous tree. We observe that uniseriality fails to hold for these groups and determine their lower central series; finally we discuss in detail Kaloujnine's description of the characteristic subgroups in terms of the (normal) "parallelotopic" subgroups.
引用
收藏
页码:503 / 527
页数:25
相关论文
共 26 条
[1]  
[Anonymous], 2000, TOPICS GEOMETRIC GRO
[2]  
BARTHOLDI L, 1998, LONDON MATH SOC LECT, V275, P1
[3]  
BODNARCHUK J, 1978, COMPUTATIONS ALGEBRA, P87
[4]  
CECCHERINISILBE.T, IN PRESS GEOMETRICAL
[5]  
Dixon J.D., 1999, ANAL PROP GROUPS
[6]  
DMITRUK J, 1978, THEORETICAL APPL QUE, P85
[7]  
DMITRUK J, 1981, UKR MAT ZH, V33, P304
[8]  
DMITRUK JV, 1978, UKRAIN MATH Z, V30, P155
[9]  
DMITRUK JV, 1982, UKR MAT ZH, V34, P256
[10]  
Grigorchuk R. I., 2000, PROG MATH, V184, P121