Naive Bayes classification in R

被引:57
作者
Zhang, Zhongheng [1 ]
机构
[1] Zhejiang Univ, Dept Crit Care Med, Jinhua Municipal Cent Hosp, Jinhua Hosp, Jinhua 321000, Peoples R China
关键词
Machine learning; R; naive Bayes; classification; average accuracy; kappa; SEPSIS;
D O I
10.21037/atm.2016.03.38
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Naive Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naive Bayes classification.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2014, TU WIEN R PACK E1071
[2]   Sepsis: a roadmap for future research [J].
Cohen, Jonathan ;
Vincent, Jean-Louis ;
Adhikari, Neill K. J. ;
Machado, Flavia R. ;
Angus, Derek C. ;
Calandra, Thierry ;
Jaton, Katia ;
Giulieri, Stefano ;
Delaloye, Julie ;
Opal, Steven ;
Tracey, Kevin ;
van der Poll, Tom ;
Pelfrene, Eric .
LANCET INFECTIOUS DISEASES, 2015, 15 (05) :581-614
[3]   SEPSIS Revising definitions of sepsis [J].
Drewry, Anne M. ;
Hotchkiss, Richard S. .
NATURE REVIEWS NEPHROLOGY, 2015, 11 (06) :326-U29
[4]   Bayes' Theorem in the 21st Century [J].
Efron, Bradley .
SCIENCE, 2013, 340 (6137) :1177-1178
[5]   CROSS-VALIDATION PERFORMANCE OF MORTALITY PREDICTION MODELS [J].
HADORN, DC ;
DRAPER, D ;
ROGERS, WH ;
KEELER, EB ;
BROOK, RH .
STATISTICS IN MEDICINE, 1992, 11 (04) :475-489
[6]   Machine learning for medical diagnosis: history, state of the art and perspective [J].
Kononenko, I .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2001, 23 (01) :89-109
[7]   Bayes' theorem [J].
Lopez Puga, Jorge ;
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2015, 12 (04) :277-278
[8]  
Medow Mitchell A, 2011, Evid Based Med, V16, P163, DOI 10.1136/ebm-2011-0007
[9]  
Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1
[10]  
Schumacher M, 1997, STAT MED, V16, P2813, DOI 10.1002/(SICI)1097-0258(19971230)16:24<2813::AID-SIM701>3.0.CO