Explanation of the inverse Doppler effect observed in nonlinear transmission lines

被引:16
作者
Kozyrev, AB [1 ]
van der Weide, DW [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
D O I
10.1103/PhysRevLett.94.203902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 13 条
[1]   Influence of local dispersion on transient processes accompanying the generation of rf radiation by an electromagnetic shock wave [J].
Belyantsev, AM ;
Kozyrev, AB .
TECHNICAL PHYSICS, 1998, 43 (01) :80-85
[2]   Generation of RF oscillations in the interaction of an electromagnetic shock with a synchronous backward wave [J].
Belyantsev, AM ;
Kozyrev, AB .
TECHNICAL PHYSICS, 2000, 45 (06) :747-752
[3]   Reversed Doppler effect under reflection from a shock electromagnetic wave [J].
Belyantsev, AM ;
Kozyrev, AB .
TECHNICAL PHYSICS, 2002, 47 (11) :1477-1480
[4]   Direct effective transformation of a videopulse into a radiopulse at the electromagnetic shock wave (EMSW) synchronism with forward and backward spatial harmonics of periodic microstrip transmission line based on multilayer heterostructure (MLHS) [J].
Belyantsev, AM ;
Kozyrev, AB .
ULTRAFAST PHENOMENA IN SEMICONDUCTORS, 1999, 297-2 :349-352
[5]  
Collin R.E., 2001, Foundations for Microwave Engineering, V2nd ed.
[6]  
GAPONOV AV, 1967, RADIOPHYS QUANT EL, V10, P772, DOI [10.1007/BF01031606., DOI 10.1007/BF01031606]
[7]  
Ostrovskii L. A., 1976, Soviet Physics - Uspekhi, V18, P452, DOI 10.1070/PU1975v018n06ABEH001967
[8]  
OSTROVSKII LA, 1971, QUANTUM ELECTRON, V14, P387
[9]  
Reed EJ, 2004, SCIENCE, V305
[10]   Reversed Doppler effect in photonic crystals [J].
Reed, EJ ;
Soljacic, M ;
Joannopoulos, JD .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :133901-133901