Post-translational modifications regulate the activity of the growth-restricting protease DA1

被引:12
作者
Chen, Ying [1 ,2 ]
Inze, Dirk [1 ,2 ]
Vanhaeren, Hannes [1 ,2 ]
机构
[1] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium
[2] Ctr Plant Syst Biol, VIB, B-9052 Ghent, Belgium
关键词
Cell proliferation; DA1; degradation; development; N-degron pathway; organ size; phosphorylation; protease; proteostasis; ubiquitination; UBIQUITIN RECEPTOR DA1; LIGASE BIG BROTHER; END RULE PATHWAY; STEM-CELL NICHES; ORGAN SIZE; SHOOT MERISTEM; IN-VIVO; FUNCTIONAL-CHARACTERIZATION; ARABIDOPSIS-THALIANA; CYSTEINE PROTEASES;
D O I
10.1093/jxb/erab062
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants are a primary food source and can form the basis for renewable energy resources. The final size of their organs is by far the most important trait to consider when seeking increased plant productivity. Being multicellular organisms, plant organ size is mainly determined by the coordination between cell proliferation and cell expansion. The protease DA1 limits the duration of cell proliferation and thereby restricts final organ size. Since its initial identification as a negative regulator of organ growth, various transcriptional regulators of DA1, but also interacting proteins, have been identified. These interactors include cleavage substrates of DA1, and also proteins that modulate the activity of DA1 through post-translational modifications, such as ubiquitination, deubiquitination, and phosphorylation. In addition, many players in the DA1 pathway display conserved phenotypes in other dicot and even monocot species. In this review, we provide a timely overview of the complex, but intriguing, molecular mechanisms that fine-tune the activity of DA1 and therefore final organ size. Moreover, we lay out a roadmap to identify and characterize substrates of proteases and frame the substrate cleavage events in their biological context.
引用
收藏
页码:3352 / 3366
页数:15
相关论文
共 131 条
[1]   Gibberellin Signaling Controls Cell Proliferation Rate in Arabidopsis [J].
Achard, Patrick ;
Gusti, Andi ;
Cheminant, Soizic ;
Alioua, Malek ;
Dhondt, Stijn ;
Coppens, Frederik ;
Beemster, Gerrit T. S. ;
Genschik, Pascal .
CURRENT BIOLOGY, 2009, 19 (14) :1188-1193
[2]   Analysis of the role of Arabidopsis class I TCP genes At TCP7, At TCP8, At TCP22, and At TCP23 in leaf development [J].
Aguilar-Martinez, Jose A. ;
Sinha, Neelima .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[3]   Mechanism and function of deubiquitinating enzymes [J].
Amerik, AY ;
Hochstrasser, M .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2004, 1695 (1-3) :189-207
[4]   Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems[OPEN] [J].
Arora, Deepanksha ;
Abel, Nikolaj B. ;
Liu, Chen ;
Van Damme, Petra ;
Yperman, Klaas ;
Eeckhout, Dominique ;
Vu, Lam Dai ;
Wang, Jie ;
Tornkvist, Anna ;
Impens, Francis ;
Korbei, Barbara ;
Van Leene, Jelle ;
Goossens, Alain ;
De Jaeger, Geert ;
Ott, Thomas ;
Moschou, Panagiotis Nikolaou ;
Van Damme, Daniel .
PLANT CELL, 2020, 32 (11) :3388-3407
[5]   Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots [J].
Avci, Utku ;
Petzold, H. Earl ;
Ismail, Ihab O. ;
Beers, Eric P. ;
Haigler, Candace H. .
PLANT JOURNAL, 2008, 56 (02) :303-315
[6]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[7]   Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains [J].
Boisnard-Lorig, C ;
Colon-Carmona, A ;
Bauch, W ;
Hodge, S ;
Doerner, P ;
Bancharel, E ;
Dumas, C ;
Haseloff, J ;
Berger, F .
PLANT CELL, 2001, 13 (03) :495-509
[8]   Post mortem function of AtMC9 in xylem vessel elements [J].
Bollhoner, Benjamin ;
Zhang, Bo ;
Stael, Simon ;
Denance, Nicolas ;
Overmyer, Kirk ;
Goffner, Deborah ;
Van Breusegem, Frank ;
Tuominen, Hannele .
NEW PHYTOLOGIST, 2013, 200 (02) :498-510
[9]   Cysteine protease mcll-Pa executes programmed cell death during plant embryogenesis [J].
Bozhkov, PV ;
Suarez, MF ;
Filonova, LH ;
Daniel, G ;
Zamyatnin, AA ;
Rodriguez-Nieto, S ;
Zhivotovsky, B ;
Smertenko, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14463-14468
[10]   Chloroplast Protein Degradation in Senescing Leaves: Proteases and Lytic Compartments [J].
Buet, Agustina ;
Lorenza Costa, M. ;
Martinez, Dana E. ;
Guiamet, Juan J. .
FRONTIERS IN PLANT SCIENCE, 2019, 10