Curves on K3 surfaces and modular forms

被引:81
作者
Maulik, D. [1 ]
Pandharipande, R. [2 ]
Thomas, R. P. [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
GROMOV-WITTEN THEORY; DONALDSON-THOMAS THEORY; QUANTUM COHOMOLOGY; HILBERT SCHEME; POINTS; INVARIANTS;
D O I
10.1112/jtopol/jtq030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proved. As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating lambda(g) integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibred rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by Pixton.
引用
收藏
页码:937 / 996
页数:60
相关论文
共 51 条
[1]   Counting rational curves on K3 surfaces [J].
Beauville, A .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (01) :99-108
[2]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[3]   Donaldson-Thomas type invariants via microlocal geometry [J].
Behrend, Kai .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1307-1338
[4]   Symmetric obstruction theories and Hilbert schemes of points on threefolds [J].
Behrend, Kai ;
Fantechi, Barbara .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :313-345
[5]  
Bruinier JH, 2008, 1 2 3 MODULAR FORMS
[6]   The enumerative geometry of K3 surfaces and modular forms [J].
Bryan, J ;
Leung, NC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :371-410
[7]  
Bryan J, 2008, J AM MATH SOC, V21, P101
[8]   A semiregularity map for modules and applications to deformations [J].
Buchweitz, RO ;
Flenner, H .
COMPOSITIO MATHEMATICA, 2003, 137 (02) :135-210
[9]  
DOLGACHEV I, 2005, LECT IST
[10]  
Faber C, 2005, J EUR MATH SOC, V7, P13