The many guises of R0 (a didactic note)

被引:45
作者
Cushing, J. M. [1 ,2 ]
Diekmann, Odo [3 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita, Tucson, AZ 85721 USA
[2] Univ Arizona, Interdisciplinary Program Appl Math, 617 N Santa Rita, Tucson, AZ 85721 USA
[3] Univ Utrecht, Math Inst, POB 80-010, NL-3508 TA Utrecht, Netherlands
关键词
Basic reproduction number; Next-generation matrix; Population dynamics; Infectious disease dynamics; REPRODUCTION NUMBER; PERSPECTIVES; MODELS;
D O I
10.1016/j.jtbi.2016.06.017
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The basic reproduction number R-0 is, by definition, the expected life time number of offspring of a newborn individual. An operationalization entails a specification of what events are considered as "reproduction" and what events are considered as "transitions from one individual-state to another". Thus, an element of choice can creep into the concretization of the definition. The aim of this note is to clearly expose this possibility by way of examples from both population dynamics and infectious disease epidemiology. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 30 条
[1]   On the biological interpretation of a definition for the parameter R0 in periodic population models [J].
Bacaer, Nicolas ;
Dads, El Hadi Ait .
JOURNAL OF MATHEMATICAL BIOLOGY, 2012, 65 (04) :601-621
[2]   Reproduction numbers for infections with free-living pathogens growing in the environment [J].
Bani-Yaghoub, Majid ;
Gautam, Raju ;
Shuai, Zhisheng ;
van den Driessche, P. ;
Ivanek, Renata .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :923-940
[3]  
Berman A., 1994, NONNEGATIVE MATRICES, DOI [DOI 10.1137/1.9781611971262, 10.1137/1.9781611971262]
[4]   A NOSOCOMIAL EPIDEMIC MODEL WITH INFECTION OF PATIENTS DUE TO CONTAMINATED ROOMS [J].
Browne, Cameron ;
Webb, Glenn F. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (04) :761-787
[5]  
Caswell Hal, 2001, pi
[6]   A net reproductive number for periodic matrix models [J].
Cushing, J. M. ;
Ackleh, A. S. .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :166-188
[7]  
Cushing J.M., 1994, Natural Resource Modeling, V8, P297
[8]  
CUSHING J. M., 1998, CBMS-NSF MA, V71
[9]   A graph-theoretic method for the basic reproduction number in continuous time epidemiological models [J].
de-Camino-Beck, Tomas ;
Lewis, Mark A. ;
van den Driessche, P. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (04) :503-516
[10]   The construction of next-generation matrices for compartmental epidemic models [J].
Diekmann, O. ;
Heesterbeek, J. A. P. ;
Roberts, M. G. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (47) :873-885