COLLABORATIVE CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA WITH INFORMATION FUSION AND DEEP NETS

被引:0
作者
Chen, Chen [1 ]
Zhao, Xudong [2 ]
Li, Wei [2 ]
Tao, Ran [2 ]
Du, Qian [3 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Hyperspectral Image; Information Fusion; Convolutional Neural Network; Deep Learning; Pattern Recognition;
D O I
10.1109/igarss.2019.8898443
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Convolutional neural network (CNN) receives extensive attention in hyperspectral image classification. While hyperspectral images contain abundant spectral information but lack spatial information, which usually contributes to poor classification results. In this paper, a novel classification framework called information fusion based CNN (IF-CNN) is proposed to compensate for the shortcomings of hyperspectral images. The proposed method merges hyperspectral images with abundant spectral information and LiDAR images with rich spatial information as the input of classification framework. Furthermore, the framework consists of two convolutional neural networks: one-dimensional CNN for extracting spectral features, and two-dimensional CNN for extracting spatial correlation features. Experimental results demonstrate that the proposed method achieves excellent performance compared with some existing methods.
引用
收藏
页码:2475 / 2478
页数:4
相关论文
共 9 条
[1]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015
[2]   Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03) :809-823
[3]   Hyperspectral Image Classification Using Deep Pixel-Pair Features [J].
Li, Wei ;
Wu, Guodong ;
Zhang, Fan ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :844-853
[4]   Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification [J].
Li, Wei ;
Chen, Chen ;
Su, Hongjun ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07) :3681-3693
[5]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790
[6]   Robust Hyperspectral Classification Using Relevance Vector Machine [J].
Mianji, Fereidoun A. ;
Zhang, Ye .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2100-2112
[7]   Multisource Remote Sensing Data Classification Based on Convolutional Neural Network [J].
Xu, Xiaodong ;
Li, Wei ;
Ran, Qiong ;
Du, Qian ;
Gao, Lianru ;
Zhang, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02) :937-949
[8]   Deep Learning for Remote Sensing Data A technical tutorial on the state of the art [J].
Zhang, Liangpei ;
Zhang, Lefei ;
Du, Bo .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (02) :22-40
[9]   Diverse Region-Based CNN for Hyperspectral Image Classification [J].
Zhang, Mengmeng ;
Li, Wei ;
Du, Qian .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) :2623-2634