Online model-based reinforcement learning for decision-making in long distance routes

被引:2
|
作者
Alcaraz, Juan J. [1 ]
Losilla, Fernando [1 ]
Caballero-Arnaldos, Luis [1 ]
机构
[1] Tech Univ Cartagena UPCT, Dept Informat & Commun Technol, Cartagena, Spain
关键词
Route scheduling; Reinforcement learning; Model predictive control; Monte Carlo tree search; VEHICLE-ROUTING PROBLEM; TIME WINDOWS; STOCHASTIC TRAVEL; OPTIMIZATION; FRAMEWORK; SERVICE;
D O I
10.1016/j.tre.2022.102790
中图分类号
F [经济];
学科分类号
02 ;
摘要
In road transportation, long-distance routes require scheduled driving times, breaks, and restperiods, in compliance with the regulations on working conditions for truck drivers, whileensuring goods are delivered within the time windows of each customer. However, routes aresubject to uncertain travel and service times, and incidents may cause additional delays, makingpredefined schedules ineffective in many real-life situations. This paper presents a reinforcementlearning (RL) algorithm capable of making en-route decisions regarding driving times, breaks,and rest periods, under uncertain conditions. Our proposal aims at maximizing the likelihood ofon-time delivery while complying with drivers' work regulations. We use an online model-basedRL strategy that needs no prior training and is more flexible than model-free RL approaches,where the agent must be trained offline before making online decisions. Our proposal combinesmodel predictive control with a rollout strategy and Monte Carlo tree search. At each decisionstage, our algorithm anticipates the consequences of all the possible decisions in a number offuture stages (the lookahead horizon), and then uses a base policy to generate a sequence ofdecisions beyond the lookahead horizon. This base policy could be, for example, a set of decisionrules based on the experience and expertise of the transportation company covering the routes.Our numerical results show that the policy obtained using our algorithm outperforms not onlythe base policy (up to 83%), but also a policy obtained offline using deep Q networks (DQN),a state-of-the-art, model-free RL algorithm.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Cognitive Reinforcement Learning: An Interpretable Decision-Making for Virtual Driver
    Qi, Hao
    Hou, Enguang
    Ye, Peijun
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2024, 8 : 627 - 631
  • [32] Decision-making models on perceptual uncertainty with distributional reinforcement learning
    Xu, Shuyuan
    Liu, Qiao
    Hu, Yuhui
    Xu, Mengtian
    Hao, Jiachen
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2023, 2 (02):
  • [33] A Multiple-Attribute Decision-Making Approach to Reinforcement Learning
    Shi, Haobin
    Xu, Meng
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2020, 12 (04) : 695 - 708
  • [34] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [35] A cooperative jamming decision-making method based on multi-agent reinforcement learning
    Bingchen Cai
    Haoran Li
    Naimin Zhang
    Mingyu Cao
    Han Yu
    Autonomous Intelligent Systems, 5 (1):
  • [36] An Autonomous Attack Decision-Making Method Based on Hierarchical Virtual Bayesian Reinforcement Learning
    Wang, Dinghan
    Zhang, Jiandong
    Yang, Qiming
    Liu, Jieling
    Shi, Guoqing
    Zhang, Yaozhong
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 7075 - 7088
  • [37] Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning
    Li, Shaowei
    Jia, Yuhong
    Yang, Fan
    Qin, Qingyang
    Gao, Hui
    Zhou, Yaoming
    IEEE ACCESS, 2022, 10 : 91385 - 91396
  • [38] Augmenting Reinforcement Learning With Transformer-Based Scene Representation Learning for Decision-Making of Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Mo, Xiaoyu
    Lv, Chen
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4405 - 4421
  • [39] Lane-change Behavior Decision-making of Intelligent Vehicle Based on Imitation Learning and Reinforcement Learning
    Song X.
    Sheng X.
    Cao H.
    Li M.
    Yi B.
    Huang Z.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (01): : 59 - 67
  • [40] Generalized Behavior Decision-Making Model for Ship Collision Avoidance via Reinforcement Learning Method
    Guan, Wei
    Zhao, Ming-yang
    Zhang, Cheng-bao
    Xi, Zhao-yong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (02)