Online model-based reinforcement learning for decision-making in long distance routes

被引:2
|
作者
Alcaraz, Juan J. [1 ]
Losilla, Fernando [1 ]
Caballero-Arnaldos, Luis [1 ]
机构
[1] Tech Univ Cartagena UPCT, Dept Informat & Commun Technol, Cartagena, Spain
关键词
Route scheduling; Reinforcement learning; Model predictive control; Monte Carlo tree search; VEHICLE-ROUTING PROBLEM; TIME WINDOWS; STOCHASTIC TRAVEL; OPTIMIZATION; FRAMEWORK; SERVICE;
D O I
10.1016/j.tre.2022.102790
中图分类号
F [经济];
学科分类号
02 ;
摘要
In road transportation, long-distance routes require scheduled driving times, breaks, and restperiods, in compliance with the regulations on working conditions for truck drivers, whileensuring goods are delivered within the time windows of each customer. However, routes aresubject to uncertain travel and service times, and incidents may cause additional delays, makingpredefined schedules ineffective in many real-life situations. This paper presents a reinforcementlearning (RL) algorithm capable of making en-route decisions regarding driving times, breaks,and rest periods, under uncertain conditions. Our proposal aims at maximizing the likelihood ofon-time delivery while complying with drivers' work regulations. We use an online model-basedRL strategy that needs no prior training and is more flexible than model-free RL approaches,where the agent must be trained offline before making online decisions. Our proposal combinesmodel predictive control with a rollout strategy and Monte Carlo tree search. At each decisionstage, our algorithm anticipates the consequences of all the possible decisions in a number offuture stages (the lookahead horizon), and then uses a base policy to generate a sequence ofdecisions beyond the lookahead horizon. This base policy could be, for example, a set of decisionrules based on the experience and expertise of the transportation company covering the routes.Our numerical results show that the policy obtained using our algorithm outperforms not onlythe base policy (up to 83%), but also a policy obtained offline using deep Q networks (DQN),a state-of-the-art, model-free RL algorithm.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Autonomous decision-making of UAV cluster with communication constraints based on reinforcement learning
    Zhang, Ting-Ting
    Chen, Yan
    Dong, Ren-zhi
    Chen, Tao
    Liu, Yan
    Zhang, Kai-Ge
    Song, Ai-Guo
    Lan, Yu-Shi
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2025, 14 (01):
  • [22] A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning
    Gao Z.
    Yan X.
    Gao F.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (07): : 969 - 975
  • [23] Research on Decision-making Method for Territorial Defense Based on Fuzzy Reinforcement Learning
    Zhou, Kai
    Wei, Ruixuan
    Zhang, Qirui
    Wu, Ziehen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3759 - 3763
  • [24] Random Prior Network for Autonomous Driving Decision-Making Based on Reinforcement Learning
    Qiang, Yuchuan
    Wang, Xiaolan
    Wang, Yansong
    Zhang, Weiwei
    Xu, Jianxun
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2024, 150 (04)
  • [25] Research on decision-making of autonomous vehicle following based on reinforcement learning method
    Gao, Hongbo
    Shi, Guanya
    Wang, Kelong
    Xie, Guotao
    Liu, Yuchao
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (03): : 444 - 452
  • [26] A reinforcement learning model of precommitment in decision making
    Kurth-Nelson, Zeb
    Redish, A. David
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2010, 4
  • [27] Reinforcement learning based optimal decision making towards product lifecycle sustainability
    Liu, Yang
    Yang, Miying
    Guo, Zhengang
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2022, 35 (10-11) : 1269 - 1296
  • [28] Unifying offline and online simulation for online decision-making
    Liu, Haitao
    Liang, Jinpeng
    Lee, Loo Hay
    Chew, Ek Peng
    IISE TRANSACTIONS, 2022, 54 (10) : 923 - 935
  • [29] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [30] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081