Extension of the concept of propositional deduction from classical logic to probability: an overview of probability-selection approaches

被引:4
作者
Bamber, D
Goodman, IR
Nguyen, HT
机构
[1] Space & Naval Warfare Syst Ctr, San Diego, CA 92152 USA
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
probabilistic deduction; conditional probabilities; second order probabilities; conditional events;
D O I
10.1016/S0020-0255(00)00086-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Establishing a rigorous framework for propositional deduction which also agrees with what is termed "commonsense reasoning" poses a difficult challenge. This paper is the first of a two-part effort in considering the issue and proposing (in future Part 2) a particular approach via the use of "second order" probabilities, i.e., distributions of probability measures, as opposed to probability-selection approaches, especially that of maximum entropy and Adams' high probability schemes. In the second order probability approach, usually all probability distributions are assumed a priori to be either equally likely, or more generally, to be distributed via the Dirichlet family, up to the constraints involved in the premise set of the potential deduction considered. Published by Elsevier Science Inc.
引用
收藏
页码:195 / 250
页数:56
相关论文
共 36 条
[1]  
Adams ErnestW., 1998, PRIMER PROBABILITY L
[2]  
Adams ErnestW., 1975, LOGIC CONDITIONALS A
[3]   4 PROBABILITY-PRESERVING PROPERTIES OF INFERENCES [J].
ADAMS, EW .
JOURNAL OF PHILOSOPHICAL LOGIC, 1996, 25 (01) :1-24
[4]  
[Anonymous], 1980, LOGIC BOOK
[5]  
[Anonymous], 1996, SENTENTIAL PROBABILI
[6]   Entailment with near surety of scaled assertions of high conditional probability [J].
Bamber, D .
JOURNAL OF PHILOSOPHICAL LOGIC, 2000, 29 (01) :1-74
[7]  
BAMBER D, P 2000 COMM CONTR RE
[8]   AN ALGEBRAIC SYNTHESIS OF THE FOUNDATIONS OF LOGIC AND PROBABILITY [J].
CALABRESE, P .
INFORMATION SCIENCES, 1987, 42 (03) :187-237
[9]   A THEORY OF CONDITIONAL INFORMATION WITH APPLICATIONS [J].
CALABRESE, PG .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1994, 24 (12) :1676-1684
[10]  
Copi I., 1986, INTRO LOGIC