BIPRODUCTS IN MONOIDAL CATEGORIES

被引:0
作者
Zekic, Mladen [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2021年 / 110卷 / 124期
关键词
Subject Classification; Secondary Key words and phrases; coproduct; product; zero object; dual object; infinite biproducts;
D O I
10.2298/PIM2123001Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2016, Garner and Schappi gave a criterion for existence of finite biproducts in a specific class of monoidal categories. We provide an elementary proof of (a slight generalization of) their result. Also, we explain how to prove, by using the same technique, an analogous result including infinite biproducts.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 8 条
  • [1] Etingof P., 2015, Mathematical Surveys and Monographs
  • [2] When coproducts are biproducts
    Garner, Richard
    Schappi, Daniel
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 161 (01) : 47 - 51
  • [3] Finite products are biproducts in a compact closed category
    Houston, Robin
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (02) : 394 - 400
  • [4] When Π is isomorphic to ⊕
    Iovanov, Miodrag Cristian
    [J]. COMMUNICATIONS IN ALGEBRA, 2006, 34 (12) : 4551 - 4562
  • [5] Fixed Points In Quantitative Semantics
    Laird, J.
    [J]. PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 347 - 356
  • [6] Weighted relational models of typed lambda-calculi
    Laird, Jim
    Manzonetto, Giulio
    McCusker, Guy
    Pagani, Michele
    [J]. 2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 301 - 310
  • [7] Lane S. M., 1998, Graduate Texts in Mathematics, V5
  • [8] Applying Quantitative Semantics to Higher-Order Quantum Computing
    Pagani, Michele
    Selinger, Peter
    Valiron, Benoit
    [J]. ACM SIGPLAN NOTICES, 2014, 49 (01) : 647 - 658