Spectral transitions for Aharonov-Bohm Laplacians on conical layers

被引:3
作者
Krejcirik, D. [1 ]
Lotoreichik, V. [2 ]
Ourmieres-Bonafos, T. [3 ,4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[2] Czech Acad Sci, Inst Nucl Phys, Dept Theoret Phys, Rez 25068, Czech Republic
[3] CNRS, Pl Lattre de Tassigny, F-75016 Paris, France
[4] Univ Paris 09, PSL Res Univ, CEREMADE, Pl Lattre de Tassigny, F-75016 Paris, France
关键词
Schrodinger operator; quantum layers; existence of bound states; spectral asymptotics; conical geometries; QUANTUM WAVE-GUIDES; BOUND-STATES; SCHRODINGER-OPERATORS; DISCRETE SPECTRUM; ROBIN LAPLACIANS; ASYMPTOTICS;
D O I
10.1017/prm.2018.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Laplace operator in a tubular neighbourhood of a conical surface of revolution, subject to an Aharonov-Bohm magnetic field supported on the axis of symmetry and Dirichlet boundary conditions on the boundary of the domain. We show that there exists a critical total magnetic flux depending on the aperture of the conical surface for which the system undergoes an abrupt spectral transition from infinitely many eigenvalues below the essential spectrum to an empty discrete spectrum. For the critical flux, we establish a Hardy-type inequality. In the regime with an infinite discrete spectrum, we obtain sharp spectral asymptotics with a refined estimate of the remainder and investigate the dependence of the eigenvalues on the aperture of the surface and the flux of the magnetic field.
引用
收藏
页码:1663 / 1687
页数:25
相关论文
共 50 条
[41]   Decay estimates for one Aharonov-Bohm solenoid in a uniform magnetic field II: Wave equation [J].
Wang, Haoran ;
Zhang, Fang ;
Zhang, Junyong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 446
[42]   Zero-mass fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions [J].
Khalilov, V. R. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (02) :637-654
[43]   ESTIMATES FOR EIGENVALUES OF AHARONOV-BOHM OPERATORS WITH VARYING POLES AND NON-HALF-INTEGER CIRCULATION [J].
Abatangelo, Laura ;
Felli, Veronica ;
Noris, Benedetta ;
Nys, Manon .
ANALYSIS & PDE, 2018, 11 (07) :1741-1785
[44]   Exact Solutions of Scalar Bosons in the Presence of the Aharonov-Bohm and Coulomb Potentials in the Gravitational Field of Topological Defects [J].
Boumali, Abdelmalek ;
Aounallah, Houcine .
ADVANCES IN HIGH ENERGY PHYSICS, 2018, 2018
[45]   Effects of rotation and Coulomb-type potential on the spin-1/2 Aharonov-Bohm problem [J].
Cunha, Marcio M. ;
Andrade, Fabiano M. ;
Silva, Edilberto O. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (02)
[46]   Hellmann potential and topological effects on non-relativistic particles confined by Aharonov-Bohm flux field [J].
Ahmed, Faizuddin .
MOLECULAR PHYSICS, 2023, 121 (02)
[47]   Dispersive and Strichartz Estimates for Schrödinger Equation with One Aharonov-Bohm Solenoid in a Uniform Magnetic Field [J].
Wang, Haoran ;
Zhang, Fang ;
Zhang, Junyong .
ANNALES HENRI POINCARE, 2025, 26 (08) :3029-3054
[48]   Aharonov-Bohm effect modified by the Majorana bound states in a parallel double-quantum-dot structure [J].
Jin, Li-Hui .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 84 (11) :835-843
[49]   On the solution of a “2D Coulomb + Aharonov-Bohm” problem: oscillator strengths in the discrete spectrum and scattering [J].
H. T. T. Nguyen ;
P. A. Meleshenko ;
A. V. Dolgikh ;
A. F. Klinskikh .
The European Physical Journal D, 2011, 62 :361-370
[50]   Quantum interference effects in two double quantum dots-molecules embedded in an Aharonov-Bohm ring [J].
Ladron de Guevara, M. L. ;
Lara, G. A. ;
Orellana, P. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (05) :1637-1642